3 research outputs found

    Differential geographic patterns in song components of male Albertā€™s lyrebirds

    Get PDF
    Geographic variation in bird song has received much attention in evolutionary studies, yet few consider components within songs that may be subject to different constraints and follow different evolutionary trajectories. Here, we quantify patterns of geographic variation in the socially transmitted ā€œwhistleā€ song of Albert\u27s lyrebirds (Menura alberti), an oscine passerine renowned for its remarkable vocal abilities. Albert\u27s lyrebirds are confined to narrow stretches of suitable habitat in Australia, allowing us to map likely paths of cultural transmission using a species distribution model and least cost paths. We use quantitative methods to divide the songs into three components present in all study populations: the introductory elements, the song body, and the final element. We compare geographic separation between populations with variation in these components as well as the full song. All populations were distinguishable by song, and songs varied according to the geographic distance between populations. However, within songs, only the introductory elements and song body could be used to distinguish among populations. The song body and final element changed with distance, but the introductory elements varied independently of geographic separation. These differing geographic patterns of within-song variation are unexpected, given that the whistle song components are always produced in the same sequence and may be perceived as a temporally discrete unit. Knowledge of such spatial patterns of within-song variation enables further work to determine possible selective pressures and constraints acting on each song component and provides spatially explicit targets for preserving cultural diversity. As such, our study highlights the importance for science and conservation of investigating spatial patterns within seemingly discrete behavioral traits at multiple levels of organization

    Selective alarm call mimicry in the sexual display of the male superb lyrebird (Menura novaehollandiae)

    Get PDF
    Despite much research on mimicry, little is known about the ecology of dynamic mimetic signals involving mimicry of multiple species. Some of the most conspicuous examples of phenotypically plastic mimicry are produced by oscine passerines, where vocal production learning enables some species to mimic multiple models and flexibly adjust what they mimic and when. While singing from a perch, male superb lyrebirds (Menura novaehollandiae) accurately imitate multiple songs and calls of over 20 species of bird. However, at key moments within their multimodal displays performed on display arenas on the forest floor, males mimic a small number of mobbing-alarm calls creating the acoustic illusion of a mixed-species mobbing flock (ā€˜D-songā€™). Using observations from camera footage and a field-based playback experiment, we tested six hypotheses for alarm call model selection within D-song. Mimicked species were remarkably invariant, with 79% of D-song made up of imitations of just three different bird species. Males did not mimic the most common species in their general environment, but neither did they mimic rare species. Instead, males imitated the mobbing-alarm calls of heterospecific birds that foraged on or near the forest floor. Indeed, males primarily mimicked the alarm calls of heterospecific species that foraged alongside lyrebirds and were likely to appear together in experimentally-induced, terrestrial mobbing flocks. These findings support the hypothesis that males mimic a cue of a terrestrial predatory threat to lyrebirds, most likely to exploit the antipredator behaviour of female lyrebirds. Our study illustrates the importance of investigating the drivers of model selection in dynamic multi-model mimicry
    corecore