13 research outputs found
Design and Performance of a Novel Low Energy Multi-Species Beamline for the ALPHA Antihydrogen Experiment
The ALPHA Collaboration, based at the CERN Antiproton Decelerator, has
recently implemented a novel beamline for low-energy ( 100 eV)
positron and antiproton transport between cylindrical Penning traps that have
strong axial magnetic fields. Here, we describe how a combination of
semianalytical and numerical calculations were used to optimise the layout and
design of this beamline. Using experimental measurements taken during the
initial commissioning of the instrument, we evaluate its performance and
validate the models used for its development. By combining data from a range of
sources, we show that the beamline has a high transfer efficiency, and estimate
that the percentage of particles captured in the experiments from each bunch is
(78 3)% for up to antiprotons, and (71 5)% for bunches of
up to positrons.Comment: 15 pages, 15 figure
Recommended from our members
High frequency properties of a planar ion trap fabricated on a chip
We report on the measurement of the high frequency properties of a planar Penning ion trap fabricated on a chip. Two types of chips have been measured: the first manufactured by photolithographic metal deposition on a p-doped silicon substrate and the second made with printed circuit board technology on an alumina substrate. The input capacitances and the admittances between the different trap's electrodes play a critical role in the electronic detection of the trapped particles. The measured input capacitances of the photolithographic chip amount to 65-76 pF, while the values for the printed circuit board chips are in the range of 3-5 pF. The latter are small enough for detecting non-destructively a single trapped electron or ion with a specifically tuned LC resonator. We have also measured a mutual capacitance of ∼85 fF between two of the trap's electrodes in the printed circuit board chip. This enables the detection of single, or very few, trapped particles in a broader range of charge-to-mass ratios with a simple resistor on the chip. We provide analytic calculations of the capacitances and discuss their origin and possible further reduction.</p
Observation of the effect of gravity on the motion of antimatter
Einstein’s general theory of relativity from 1915 remains the most successful description of gravitation. From the 1919 solar eclipse to the observation of gravitational waves, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac’s theory appeared in 1928; the positron was observed in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive ‘antigravity’ is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP.ISSN:0028-0836ISSN:1476-468
Recommended from our members
Design and performance of a novel low energy multispecies beamline for an antihydrogen experiment
The ALPHA Collaboration, based at the CERN Antiproton Decelerator, has recently implemented a novel beamline for low energy (≲100 eV) positron and antiproton transport between cylindrical Penning traps that have strong axial magnetic fields. Here, we describe how a combination of semianalytical and numerical calculations was used to optimize the layout and design of this beamline. Using experimental measurements taken during the initial commissioning of the instrument, we evaluate its performance and validate the models used for its development. By combining data from a range of sources, we show that the beamline has a high transfer efficiency and estimate that the percentage of particles captured in the experiments from each bunch is (78±3)% for up to 105 antiprotons and (71±5)% for bunches of up to 107 positrons
Recommended from our members
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production.
The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be+ ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries
Recommended from our members
Laser cooling of antihydrogen atoms.
The photon-the quantum excitation of the electromagnetic field-is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force2,3, known as laser cooling, was first demonstrated 40 years ago4,5. It revolutionized atomic physics over the following decades6-8, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen9, the antimatter atom consisting of an antiproton and a positron. By exciting the 1S-2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation10,11, we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude-with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S-2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic11-13 and gravitational14 studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules
Recommended from our members
Measurements of Penning-Malmberg trap patch potentials and associated performance degradation
Antiprotons created by laser ionization of antihydrogen are observed to rapidly escape the ALPHA trap. Further, positron plasmas heat more quickly after the trap is illuminated by laser light for several hours. These phenomena can be caused by patch potentials—variations in the electrical potential along metal surfaces. A simple model of the effects of patch potentials explains the particle loss, and an experimental technique using trapped electrons is developed for measuring the electric field produced by the patch potentials. The model is validated by controlled experiments and simulations