1,979 research outputs found

    Fracture mechanics analysis for various fiber/matrix interface loadings

    Get PDF
    Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis

    Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading

    Get PDF
    A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass laoding in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests

    Combined bearing and bypass loading on a graphite/epoxy laminate

    Get PDF
    A combined experimental and analytical study was conducted to determine the behavior of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Single-fastener quasi-isotropic specimens were loaded at various bearing-bypass ratios until damage was produced at the fastener hole. Damage-onset strengths and damage modes were then analyzed using local hole-boundary stresses calculated by a finite-element analysis. The tension data showed the expected linear interaction for combined bearing and bypass loading with damage developing in the net-section tension mode. However, the compression bearing-bypass strengths showed an unexpected interaction involving the bearing mode. Compressive bypass loads reduced the bearing strength by decreasing the bolt-hole contact arc and thus increasing the severity of the bearing loads. The bearing stresses at the hole boundary were not accurately estimated by superposition of the stress components for separate bearing and bypass loading. However, superposition produced reasonably accurate estimates for tangential stresses especially near the specimen net-section

    Failure analysis of a graphite/epoxy laminate subjected to bolt bearing loads

    Get PDF
    Quasi-isotropic graphite/epoxy laminates (T300/5208) were tested under bolt bearing loads to study failure modes, strengths, and failure energy. Specimens had a range of configurations to produce failures by the three nominal failure modes: tension, shearout, and bearing. Radiographs were made after damage onset and after ultimate load to examine the failure modes. Also, the laminate stresses near the bolt hole calculated for each test specimen configuration, and then used with a failure criterion to analyze the test data. Failures involving extensive bearing damage were found to dissipate significantly more energy than tension dominated failures. The specimen configuration influenced the failure modes and therefore also influenced the failure energy. In the width-to-diameter ratio range of 4 to 5, which is typical of structural joints, a transition from the tension mode to the bearing mode was shown to cause a large increase in failure energy. The failure modes associated with ultimate strength were usually different from those associated with the damage onset. Typical damage sequences involved bearing damage onset at the hole boundary followed by tension damage progressing from the hole boundary

    Effects of T-tabs and large deflections in DCB specimen tests

    Get PDF
    A simple strength of materials analysis was developed for a double-cantilever beam (DCB) specimen to account for geometric nonlinearity effects due to large deflections and T-tabs. A new DCB data analysis procedure was developed to include the effects of these nonlinearities. The results of the analysis were evaluated by DCB tests performed for materials having a wide range of toughnesses. The materials used in the present study were T300/5208, IM7/8551-7, and AS4/PEEK. Based on the present analysis, for a typical deflection/crack length ratio of 0.3 (for AS4/PEEK), T-tabs and large deflections cause a 15 percent and 3 percent error, respectively, in the computer Mode 1 strain energy release rate. Design guidelines for DCB specimen thickness and T-tab height were also developed in order to keep errors due to these nonlinearities within 2 percent. Based on the test results, for both hinged and tabbed specimens, the effects of large deflection on the Mode 1 fracture toughness (G sub Ic) were almost negligible (less than 1 percent) in the case of T300/5208 and IM7/8551-7; however, AS4/PEEK showed a 2 to 3 percent effect. The effects of T-tabs G sub Ic were more significant for all the materials with T300/5208 showing a 5 percent error, IM7/8551-7 a 15 percent error, and, AS4/PEEK a 20 percent error

    Debond propagation in composite reinforced metals

    Get PDF
    Strain energy release rates were used to correlate cyclic debonding between metal sheets and composite reinforcement. An expression for the strain energy release rate was derived and applied to fatigue test results for three material systems: graphite bonded to aluminum with both a room temperature and an elevated temperature curing adhesive, and S-glass bonded to aluminum with an elevated temperature curing adhesive. For each material system, several thicknesses were tested with a range of fatigue loads. Cyclic debonding was monitored using a photoelastic technique. A close correlation was found between the observed debond rates and the calculated strain energy release rates for each material system

    Cyclic debonding of unidirectional composite bonded to aluminum sheet for constant-amplitude loading

    Get PDF
    Cyclic debonding rates were measured during constant-amplitude loading of specimens made of graphite/epoxy bonded to aluminum and S-glass/epoxy bonded to aluminum. Both room-temperature and elevated-temperature curing adhesives were used. Debonding was monitored with a photoelastic coating technique. The debonding rates were compared with three expressions for strain-energy release rate calculated in terms of the maximum stress, stress range, or a combination of the two. The debonding rates were influenced by both adherent thickness and the cyclic stress ratio. For a given value of maximum stress, lower stress ratios and thicker specimens produced faster debonding. Microscopic examination of the debonded surfaces showed different failure mechanisms both for identical adherends bonded with different adhesive and, indeed, even for different adherends bonded with identical adhesives. The expressions for strain-energy release rate correlated the data for different specimen thicknesses and stress ratios quite well for each material system, but the form of the best correlating expression varied among material systems. Empirical correlating expressions applicable to one material system may not be appropriate for another system

    Measurement of the Center-of-Gravity Using X-Ray Computed Tomography

    Get PDF
    The quantitative capability of CT to measure the relative X-ray linear attenuation coefficient and position of small volume elements in a component also offers the potential to perform center-of-gravity (CG) measurements for rotating systems. Currently, the practice of engine vibration reduction is one of disassembly, iteratively checking balance and grinding off mass until the amount of imbalance is acceptable. This process is labor intensive. An alternative nondestructive method to measure the CG prior to disassembly could provide a cost effective method to minimize the labor effort in balancing operations

    A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood

    Full text link
    © 2015 Elsevier Ltd. This paper presents a comparative study using static and ultrasonic testing for the determination of the full set of orthotropic material properties of wood. In the literature, material properties are typically only available in the longitudinal direction, and most international standards do not provide details on the testing of the other two secondary directions (radial and tangential). This work provides a comprehensive study and discussions on the determination of all twelve orthotropic material properties of two hardwood species using static testing and an alternative testing approach based on ultrasonic waves. Recommendations are given on the execution of the tests and the interpretation and calibration of the results

    Bearing-bypass loading on bolted composite joints

    Get PDF
    The effects of simultaneous bearing and bypass loading on a graphite-epoxy (T300/5208) laminate were investigated. Onset damage and ultimate strengths were determined for each test case. A finite element stress analysis was conducted for each test case. The computed local stresses were used with appropriate failure criteria to analyze the observed failure modes and strengths. An unexpected interaction of the effect of the bypass and bearing loads was found for the onset of compression reacted bearing damage. The interaction was caused by a decrease in the bolt-hole contact arc and a corresponding increase in the severity of the bearing loads. The amount of bolt-hole contact had a significant effect on local stresses and, thus, on the calculated damage-onset and ultimate strengths. An offset-compression failure mode was identified for laminate failure under compression bearing-bypass loading
    corecore