8 research outputs found
pi-complex structure of gaseous benzene-NO cations assayed by IR multiple photon dissociation spectroscopy
International audienc
Protonated Forms of Naringenin and Naringenin Chalcone: Proteiform Bioactive Species Elucidated by IRMPD Spectroscopy, IMS, CID-MS, and Computational Approaches
Naringenin (Nar) and its structural isomer, naringenin chalcone (ChNar), are two natural phytophenols with beneficial health effects belonging to the flavonoids family. A direct discrimination and structural characterization of the protonated forms of Nar and ChNar, delivered into the gas phase by electrospray ionization (ESI), was performed by mass spectrometry-based methods. In this study, we exploit a combination of electrospray ionization coupled to (high-resolution) mass spectrometry (HR-MS), collision-induced dissociation (CID) measurements, IR multiple-photon dissociation (IRMPD) action spectroscopy, density functional theory (DFT) calculations, and ion mobility-mass spectrometry (IMS). While IMS and variable collision-energy CID experiments hardly differentiate the two isomers, IRMPD spectroscopy appears to be an efficient method to distinguish naringenin from its related chalcone. In particular, the spectral range between 1400 and 1700 cm-1 is highly specific in discriminating between the two protonated isomers. Selected vibrational signatures in the IRMPD spectra have allowed us to identify the nature of the metabolite present in methanolic extracts of commercial tomatoes and grapefruits. Furthermore, comparisons between experimental IRMPD and calculated IR spectra have clarified the geometries adopted by the two protonated isomers, allowing a conformational analysis of the probed species
Concomitant hydride and proton transfer: an essay on competing and consecutive key reactions occurring in gaseous ion/neutral complexes
Kuck D. Concomitant hydride and proton transfer: an essay on competing and consecutive key reactions occurring in gaseous ion/neutral complexes. European Journal of Mass Spectrometry. 2012;18(2):161-181.The interplay of proton transfer and hydride transfer reactions in alkylbenzenium ions and related protonated di- and oligophenylalkanes is presented and discussed. While intra- and inter-annular proton exchange has been recognised to be a ubiquitous feature in protonated arenes, hydride abstraction is much less obvious but can become a dominating fragmentation channel in metastable ions of tert-butyl-substituted alkylbenzenium ions and related carbocations. In such cases, proton-induced release of the tert-butyl cation gives rise to ion/neutral complexes as reactive intermediates, for example, [(CH3)(3)C+center dot center dot center dot arylCH(2)(alpha)(CH2)(n) CH(2)(omega)aryl'] with n >= 0 and highly regioselective intra-complex hydride transfer occurs from all of the benzylic methylene hydride ion donor groups (alpha-CH2 and (omega)-CH2) to the tert-butyl cation acting as a Lewis acid. Substituent effects on the individual contributions to the overall hydride transfer from different donor sites, including ortho-methyl groups, in particular, and the concomitant intra-complex proton transfer from the tert-butyl cation to the neutral diarylalkane constituent corroborate the view of "bisolvated" complexes as the central intermediates, in which the carbenium ion is coordinated to both of the aromatic pi-electron systems. The role of cyclisation processes, converting the benzylic [M-H](+)-type ions into the isomeric benzenium, [M+H](+)-type ions prior to fragmentation, is demonstrated for several cases. This overall scenario, consisting of consecutive and/or competing intra-complex hydride abstraction and proton transfer, intra-annular proton shifts (H+ ring walk) and inter-annular proton transfer, hydrogen exchange ("scrambling") processes, and cyclisation and other electrophilic substitution reactions, is of general importance in this field of gas-phase ion chemistry and more recent examples concerning protonated ethers, benzylpyridinium and benzylammmonium ions are discussed in which these recurring features play central and concerted mechanistic roles as well