26 research outputs found

    Processing and analysis of airborne fullwaveform laser scanning data for the characterization of forest structure and fuel properties

    Full text link
    Tesis por compendio[ES] Esta tesis aborda el desarrollo de métodos de procesado y análisis de datos ALSFW para la caracterización de la estructura vertical del bosque y, en particular, del sotobosque. Para responder a este objetivo general, se establecieron seis objetivos específicos: En primer lugar, se analiza la influencia de la densidad de pulso, de los parámetros de voxelización (tamaño de vóxel y valor de asignación) y de los métodos de regresión sobre los valores de las métricas ALSFW y sobre la estimación de atributos de estructura del bosque. Para ello, se redujo aleatoriamente la densidad de pulsos y se modificaron los parámetros de voxelización, obteniendo los valores de las métricas ALSFW para las diferentes combinaciones de parámetros. Estas mismas métricas ALSFW se emplearon para la estimación de atributos de la estructura del bosque mediante diferentes métodos de regresión. En segundo lugar, se integran métodos de procesado y análisis de datos ALSFW en una nueva herramienta llamada WoLFeX (Waveform Lidar for Forestry eXtraction) que incluye los procesos de recorte, corrección radiométrica relativa, voxelización y extracción de métricas a partir de los datos ALSFW, así como nuevas métricas descriptoras del sotobosque. En tercer lugar, se evalúa la influencia del ángulo de escaneo utilizado en la adquisición de datos ALS y la corrección radiométrica en la extracción de métricas ALSFW y en la estimación de atributos de combustibilidad forestal. Para ello, se extrajeron métricas ALSFW con y sin corrección radiométrica relativa y empleando diferentes ángulos de escaneo. En cuarto lugar, se caracteriza la oclusión de la señal a lo largo de la estructura vertical del bosque empleando y comparando tres tipos diferentes de láser escáner (ALSFW, ALSD y láser escáner terrestre: TLS, por sus siglas en inglés), determinando así sus limitaciones en la detección de material vegetativo en dos ecosistemas forestales diferenciados: el boreal y el mediterráneo. Para cuantificar la oclusión de la señal a lo largo de la estructura vertical del bosque se propone un nuevo parámetro, la tasa de reducción del pulso, basada en el porcentaje de haces láser bloqueados antes de alcanzar una posición dada. En quinto lugar, se evalúa la forma en que se detectan y determinan las clases de densidad de sotobosque mediante los diferentes tipos de ALS. Se compararon los perfiles de distribución vertical en los estratos inferiores descritos por el ALSFW y el ALSD con respecto a los descritos por el TLS, utilizando este último como referencia. Asimismo, se determinaron las clases de densidad de sotobosque aplicando la curva Lorenz y el índice Gini a partir de los perfiles de distribución vertical descritos por ALSFW y ALSD. Finalmente, se aplican y evalúan las nuevas métricas ALSFW basadas en la voxelización, utilizando como referencia los atributos extraídos a partir del TLS, para estimar la altura, la cobertura y el volumen del sotobosque en un ecosistema mediterráneo.[EN] This thesis addresses the development of ALSFW processing and analysis methods to characterize the vertical forest structure, in particular, the understory vegetation. To answer this overarching goal, a total of six specific objectives were established: Firstly, the influence of pulse density, voxel parameters (i.e., voxel size and assignation value) and regression methods on ALSFW metric values and on estimates of forest structure attributes are analyzed. To do this, pulse density was randomly reduced and voxel parameters modified, obtaining ALSFW metric values for the different parameter combinations. These ALSFW metrics were used to estimate forest structure attributes with different regression methods. Secondly, a set of ALSFW data processing and analysis methods are integrated in a new software named WoLFeX (Waveform Lidar for Forestry eXtraction), including clipping, relative radiometric correction, voxelization and ALSFW metric extraction, and proposing new metrics for understory vegetation. Thirdly, the influence of the scan angle of ALS data acquisition and radiometric correction on the extraction of ALSFW metrics and on modeling forest fuel attributes is assessed. To do this, ALSFW metrics were extracted applying and without applying relative radiometric correction and using different scan angles. Fourthly, signal occlusion is characterized along the vertical forest structure using and comparing three different laser scanning configurations (ALSFW, ALSD and terrestrial laser scanning: TLS), determining their limitations in the detection of vegetative material in two contrasted forest ecosystems: boreal and Mediterranean. To quantify signal occlusion along the vertical forest structure, a new parameter based on the percentage of laser beams blocked prior to reach a given location, the rate of pulse reduction, is proposed. Fifthly, the assessment of how understory vegetation density classes are detected and determined by different ALS configurations is done. Vertical distribution profiles at the lower strata described by ALSFW and ALSD are compared with those described by TLS as reference. Moreover, understory vegetation density classes are determined by applying the Lorenz curve and Gini index from the vertical distribution profiles described by ALSFW and ALSD. Finally, the new proposed voxel-based ALSFW metrics are applied and evaluated, using TLS-based attributes as a reference, to estimate understory height, cover and volume in a Mediterranean ecosystem.[CA] Aquesta tesi aborda el desenvolupament de mètodes de processament i anàlisi de dades ALSFW per a la caracterització de l'estructura vertical del bosc i, en particular, del sotabosc. Per a respondre a aquest objectiu general, s'establiren sis objectius específics: En primer lloc, s'analitza la influència de la densitat de pols, dels paràmetres de voxelització (grandària de vóxel i valor d'assignació) i dels mètodes de regressió sobre els valors de les mètriques ALSFW i sobre l'estimació dels atributs d'estructura del bosc. Per a això, es reduí aleatòriament la densitat de polsos i es modificaren els paràmetres de voxelització, obtenint els valors de les mètriques ALSFW per a les diferents combinacions de paràmetres. Aquestes mètriques ALSFW s'empraren per a l'estimació d'atributs de l'estructura del bosc mitjançant diferents mètodes de regressió. En segon lloc, s'integraren mètodes de processament i d'anàlisi de dades ALSFW en una nova eina anomenada WoLFeX (Waveform Lidar for Forestry eXtraction) que inclou el processos de retallada, correcció radiomètrica relativa, voxelització i extracció de mètriques a partir de les dades ALSFW, així com noves mètriques descriptores del sotabosc. En tercer lloc, s'avalua la influència de l'angle de escaneig emprat en l'adquisició de les dades ALS i la correcció radiomètrica en l'extracció de mètriques ALSFW i en l'estimació d'atributs de combustibilitat forestal. Per a això, s'extragueren mètriques ALSFW amb i sense correcció radiomètrica relativa i emprant diferents angles d'escaneig. En quart lloc, es caracteritza l'oclusió del senyal al llarg de l'estructura vertical del bosc emprant i comparant tres tipus diferents de làser escàner (ALSFW, ALSD i làser escàner terrestre: TLS, per les seues sigles en anglès), determinant així les seues limitacions en la detecció de material vegetatiu en dos ecosistemes diferenciats: un boreal i un mediterrani. Per a quantificar l'oclusió del senyal al llarg de l'estructura vertical del bosc es proposa un nou paràmetre, la taxa de reducció del pols, basada en el percentatge de rajos làser bloquejats abans d'arribar a una posició donada. En cinquè lloc, s'avalua la manera en la qual es detecten i determinen les classes de densitat de sotabosc mitjançant els diferents tipus d'ALS. Es compararen els perfils de distribució vertical en estrats inferiors descrits per l'ALSFW i l'ALSD respecte als descrits pel TLS, emprant aquest últim com a referència. A més a més, es determinaren les classes de densitat de sotabosc aplicant la corba Lorenz i l'índex Gini a partir dels perfils de distribució vertical descrits per l'ALSFW i l'ALSD. Finalment, s'apliquen i avaluen les noves mètriques ALSFW basades en la voxelització, emprant com a referència els atributs extrets a partir del TLS, per a estimar l'alçada, la cobertura i el volum del sotabosc en un ecosistema mediterrani.Crespo Peremarch, P. (2020). Processing and analysis of airborne fullwaveform laser scanning data for the characterization of forest structure and fuel properties [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/153715TESISCompendi

    Análisis de minería de datos para la clasificación de imágenes aéreas

    Full text link
    [EN] This project tries to improve the land cover classification of aerial images using data mining. A comparison of some data mining techniques is done so as to classify urban and peri-urban areas, using the image segmentation in order to differentiate the objects that we want to classify. The next step is to analyse if adding and selecting attributes, the classification accuracy can be improved. Finally, we investigate whether the models that have been generated can classify a new geographical area with similar features.[ES] Este proyecto trata de mejorar la clasificación de los usos del suelo con imágenes aéreas utilizando la minería de datos. Para ello se comparan diferentes técnicas de minería de datos en clasificaciones de zonas urbanas y periurbanas, utilizando la segmentación de imágenes para poder separar los diferentes objetos a clasificar. A partir de los resultados obtenidos, se estudia el problema de la agregación y selección de atributos para este tipo de imágenes, y se analiza el comportamiento de los modelos generados cuando se aplican a otras zonas geográficas con características similares.Crespo Peremarch, P. (2014). Análisis de minería de datos para la clasificación de imágenes aéreas. http://hdl.handle.net/10251/51835Archivo delegad

    A full-waveform airborne laser scanning metric extraction tool for forest structure modelling. Do scan angle and radiometric correction matter?

    Full text link
    [EN] In the last decade, full-waveform airborne laser scanning (ALSFW) has proven to be a promising tool for forestry applications. Compared to traditional discrete airborne laser scanning (ALSD), it is capable of registering the complete signal going through the different vertical layers of the vegetation, allowing for a better characterization of the forest structure. However, there is a lack of ALSFW software tools for taking greater advantage of these data. Additionally, most of the existing software tools do not include radiometric correction, which is essential for the use of ALSFW data, since extracted metrics depend on radiometric values. This paper describes and presents a software tool named WoLFeX for clipping, radiometrically correcting, voxelizing the waves, and extracting object-oriented metrics from ALSFW data. Moreover, extracted metrics can be used as input for generating either classification or regression models for forestry, ecology, and fire sciences applications. An example application of WoLFeX was carried out to test the influence of the relative radiometric correction and the acquisition scan angle (1) on the ALSFW metric return waveform energy (RWE) values, and (2) on the estimation of three forest fuel variables (CFL: canopy fuel load, CH: canopy height, and CBH: canopy base height). Results show that radiometric differences in RWE values computed from different scan angle intervals (0°¿5° and 15°¿20°) were reduced, but not removed, when the relative radiometric correction was applied. Additionally, the estimation of height variables (i.e., CH and CBH) was not strongly influenced by the relative radiometric correction, while the model obtained for CFL improved from R2 = 0.62 up to R2 = 0.79 after applying the correction. These results show the significance of the relative radiometric correction for reducing radiometric differences measured from different scan angles and for modelling some stand-level forest fuel variables.This research was funded by the Spanish Ministerio de Economia y Competitividad and FEDER, in the framework of the projects ForeStructure (CGL2013-46387-C2-1-R) and FIRMACARTO (CGL2016-80705-R).Crespo-Peremarch, P.; Ruiz Fernández, LÁ. (2020). A full-waveform airborne laser scanning metric extraction tool for forest structure modelling. Do scan angle and radiometric correction matter?. Remote Sensing. 12(2):1-17. https://doi.org/10.3390/rs12020292S11712

    Assessing the use of discrete, full-waveform LiDAR and TLS to classify Mediterranean forest species composition

    Get PDF
    Revista oficial de la Asociación Española de Teledetección[EN] LiDAR technology –airborne and terrestrial- is becoming more relevant in the development of forest inventories, which are crucial to better understand and manage forest ecosystems. In this study, we assessed a classification of species composition in a Mediterranean forest following the C4.5 decision tree. Different data sets from airborne laser scanner full-waveform (ALSFW), discrete (ALSD) and terrestrial laser scanner (TLS) were combined as input data for the classification. Species composition were divided into five classes: pure Quercus ilex plots (QUI); pure Pinus halepensis dense regenerated (HALr); pure P. halepensis (HAL); pure P. pinaster (PIN); and mixed P. pinaster and Q. suber (mPIN). Furthermore, the class HAL was subdivided in low and dense understory vegetation cover. As a result, combination of ALSFW and TLS reached 85.2% of overall accuracy classifying classes HAL, PIN and mPIN. Combining ALSFW and ALSD, the overall accuracy was 77.0% to discriminate among the five classes. Finally, classification of understory vegetation cover using ALSFW reached an overall accuracy of 90.9%. In general, combination of ALSFW and TLS improved the overall accuracy of classifying among HAL, PIN and mPIN by 7.4% compared to the use of the data sets separately, and by 33.3% with respect to the use of ALSD only. ALSFW metrics, in particular those specifically designed for detection of understory vegetation, increased the overall accuracy 9.1% with respect to ALSD metrics. These analyses show that classification in forest ecosystems with presence of understory vegetation and intermediate canopy strata is improved when ALSFW and/or TLS are used instead of ALSD.[ES] La tecnología LiDAR, tanto en sus versiones aerotransportada como terrestre, ha adquirido relevancia en los últimos años en la realización de inventarios forestales que permiten entender y adecuar la gestión de los ecosistemas forestales. En este estudio, se evaluó la clasificación por composición de especies en un bosque mediterráneo mediante el árbol de decisión C4.5. Para ello, se emplearon diferentes conjuntos de datos derivados de LiDAR discreto (ALSD ), LiDAR de retorno de onda completa (full-waveform, ALSFW) y láser escáner terrestre (TLS) como datos de entrada de la clasificación. La composición de especies se dividió en cinco clases: parcelas puras de Quercus ilex (QUI); puras de Pinus halepensis regenerado (HALr); puras de P. halepensis (HAL); puras de P. pinaster (PIN); y mixta de P. pinaster y Q. suber (mPIN). Además, se realizó una subdivisión de la clase HAL en cobertura de sotobosque escasa y densa. Como resultado se obtuvo una fiabilidad del 85,2% en la clasificación de las clases HAL, PIN y mPIN combinando ALSFW y TLS. En la clasificación de las cinco composiciones de especies, la fiabilidad alcanzada empleando ALSFW y ALSD fue del 77,0%. Finalmente, en la clasificación de las subclases de cobertura de sotobosque se logró un 90,9% de fiabilidad con ALSFW. En general, la combinación de ALSFW y TLS mejoró los resultados en un 7,4% en la clasificación de las clases HAL, PIN y mPIN en comparación con el uso de los datos de los sensores por separado, y en un 33,3% con respecto al uso de ALSD. Las métricas ALSFW, en particular aquellas diseñadas especialmente para la detección del sotobosque, mejoraron la precisión en un 9,1% con respecto a las métricas derivadas de ALSD. Estos análisis muestran que el uso del ALSFW y TLS mejora la clasificación de los ecosistemas forestales con presencia de sotobosque y diferentes especies arbóreas en los estratos intermedios con respecto al ALSD.This research has been funded by the Spanish Ministerio de Economia y Competitividad and FEDER, in the framework of the project CGL2016-80705-R.Torralba, J.; Crespo-Peremarch, P.; Ruiz, LA. (2018). Evaluación del uso de LiDAR discreto, full-waveform y TLS en la clasificación por composición de especies en bosques mediterráneos. Revista de Teledetección. (52):27-40. https://doi.org/10.4995/raet.2018.11106SWORD274052Åkerblom, M., Raumonen, P., Mäkipää, R., Kaasalainen, M. 2017. Automatic tree species recognition with quantitative structure models. Remote Sensing of Environment, 191, 1-12. https://doi.org/10.1016/j.rse.2016.12.002Barbier, S., Gosselin, F., Balandier, P. 2008. Influence of tree species on understory vegetation diversity and mechanisms involved-A critical review for temperate and boreal forests. Forest Ecology and Management, 254(1), 1-15. https://doi.org/10.1016/j.foreco.2007.09.038Bastrup-Birk, A., Reker, J., Zal, N. 2016. European forest ecosystems: State and trends. EEA Report n° 5/2016. Copenhagen. https://doi.org/10.2800/964893Bauwens, S., Bartholomeus, H., Calders, K., Lejeune, P. 2016. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests, 7(12), 127. https://doi.org/10.3390/f7060127Cabo, C., Ordóñez, C., López-Sánchez, C. A., Armesto, J. 2018. Automatic dendrometry: Tree detection, tree height and diameter estimation using terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation, 69(November 2017), 164-174. https://doi.org/10.1016/j.jag.2018.01.011Cao, L., Coops, N., Hermosilla, T., Innes, J., Dai, J., She, G. 2014. Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests. Remote Sensing, 6(8), 7110- 7135. https://doi.org/10.3390/rs6087110Cifuentes, R., Zande, D. Van Der, Farifteh, J., Salas, C., Coppin, P. 2015. Effects of voxel size and sampling setup on the estimation of forest canopy gap fraction from terrestrial laser scanning data. Agricultural and Forest Meteorology, 201(August), 416. https://doi.org/10.1016/j.agrformet.2015.08.226Cowling, R. M., Rundel, P. W., Lamont, B. B., Kalin Arroyo, M., Arianoutsou, M. 1996. Plant diversity in mediterranean-climate regions. Trends in Ecology & Evolution, 11(9), 362-366. https://doi.org/10.1016/0169-5347(96)10044-6Crespo-Peremarch, P., Ruiz, L. A., Balaguer-Beser, A. 2016. A comparative study of regression methods to predict forest structure and canopy fuel variables from LiDAR full-waveform data. Revista de Teledetección, 45, 27-40. https://doi.org/10.4995/raet.2016.4066Crespo-Peremarch, P., Ruiz, L. Á. 2017. Análisis comparativo del potencial del ALS y TLS en la caracterización estructural de la masa forestal basado en voxelización. In Nuevas plataformas y sensores de teledetcción. XVII Congreso de la Asociación Española de Teledetección (pp. 131-135). Murcia: Asociación Española de Teledetección.Crespo-Peremarch, P., Tompalski, P., Coops, N. C., Ruiz, L. Á. 2018. Characterizing understory vegetation in Mediterranean forests using fullwaveform airborne laser scanning data. Remote Sensing of Environment, 217(August), 400-413. https://doi.org/10.1016/j.rse.2018.08.033Dubayah, R. O., Drake, J. B. 2000. Lidar Remote Sensing for Forestry Applications. Journal of Forestry, 98(6), 44-46. https://doi.org/10.1093/jof/98.6.44Duncanson, L. I., Niemann, K. O., Wulder, M. A. 2010. Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2009.08.018Duong, V. H. 2010. Processing and Application of ICESat Large Footprint Full Waveform Laser Range Data. Delft University of Technology, Delft, The Netherlands.Estornell, J., Velázquez-Martí, A., FernándezSarría, A., López-Cortés, I., Martí-Gavilá, J., Salazar, D. 2017. Estimación de parámetros de estructura de nogales utilizando láser escáner terrestre. Revista de Teledetección, 48, 67. https://doi.org/10.4995/raet.2017.7429García, M., Danson, F. M., Riaño, D., Chuvieco, E., Ramirez, F. A., Bandugula, V. 2011. Terrestrial laser scanning to estimate plot-level forest canopy fuel properties. International Journal of Applied Earth Observation and Geoinformation, 13(4), 636-645. https://doi.org/10.1016/j.jag.2011.03.006Geri, F., Amici, V., Rocchini, D. 2010. Human activity impact on the heterogeneity of a Mediterranean landscape. Applied Geography, 30(3), 370-379. https://doi.org/10.1016/J.APGEOG.2009.10.006Hancock, S., Anderson, K., Disney, M., Gaston, K. J. 2017. Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar. Remote Sensing of Environment, 188, 37-50. https://doi.org/10.1016/J.RSE.2016.10.041Heinzel, J., Koch, B. 2011. Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152-160. https://doi.org/10.1016/J.JAG.2010.09.010Heinzel, J., Huber, M. 2016. Detecting tree stems from volumetric TLS data in forest environments with rich understory. Remote Sensing, 9(1), 9. https://doi.org/10.3390/rs9010009Hollaus, M., Mücke, W., Höfle, B., Dorigo, W., Pfeifer, N., Wagner, W., … Regner, B. 2009. Tree species classification based on full-waveform airborne laser scanning data. In Silvilaser 2009 (Vol. 54). Texas, USA.Isenburg, M. 2018. LAStools - Efficient tools for LiDAR processing. (Version 180409) obtained from http://rapidlasso.com/LAStools. Alemania: Rapidlasso GmbH.Kankare, V., Liang, X., Vastaranta, M., Yu, X., Holopainen, M., Hyyppä, J. 2015. Diameter distribution estimation with laser scanning based multisource single tree inventory. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 161- 171. https://doi.org/10.1016/j.isprsjprs.2015.07.007Kimes, D. S., Ranson, K. J., Sun, G., Blair, J. B. 2006. Predicting lidar measured forest vertical structure from multi-angle spectral data. Remote Sensing of Environment, 100(4), 503-511. https://doi.org/10.1016/j.rse.2005.11.004Kraus, K., Pfeifer, N. 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53(4), 193-203. https://doi.org/10.1016/S0924-2716(98)00009-4Lefsky, M. A., Cohen, W. B., Parker, G. G., Harding, D. J. 2002. Lidar Remote Sensing for Ecosystem Studies. BioScience, 52(1), 19-30. https://doi. org/10.1641/0006-3568(2002)052[0019:LRSFES]2 .0.CO;2Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., … Vastaranta, M. 2016. Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63- 77. https://doi.org/10.1016/j.isprsjprs.2016.01.006Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., … Wang, Y. 2018. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 144(October 2018), 137-179. https://doi. org/10.1016/j.isprsjprs.2018.06.021Lin, Y., Herold, M. 2016. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agricultural and Forest Meteorology, 216, 105-114. https://doi.org/10.1016/j.agrformet.2015.10.008Maas, H. G., Bienert, A., Scheller, S., Keane, E. 2008. Automatic forest inventory parameter determination from terrestrial laser scanner data. International Journal of Remote Sensing, 29(5), 1579-1593. https://doi.org/10.1080/01431160701736406Magrama. 2006. Mapa Forestal de España. Escala 1:50.000. Ministerio de Agricultura, Alimentación y Medio Ambiente. Dirección General de Desarrollo Rural y Política Forestal.McGaughey, R. J. 2016. FUSION/LDV: Software for LIDAR Data Analysis and Visualization. Seattle (WA): USDS Forest Service, Pacific Northwest Research Station. https://doi.org/10.1097/ BRS.0b013e3182a439ccMyers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853- 858. https://doi.org/10.1038/35002501Othmani, A., Piboule, A., Krebs, M., Stolz, C. 2011. Towards automated and operational forest inventories with T-Lidar. SilviLaser, 1-9.Othmani, A., Lew Yan Voon, L. F. C., Stolz, C., Piboule, A. 2013. Single tree species classification from Terrestrial Laser Scanning data for forest inventory. Pattern Recognition Letters, 34(16), 2144-2150. https://doi.org/10.1016/j.patrec.2013.08.004Palik, B., Engstrom, R. T. 1999. Species composition. In M. L. Hunter (Ed.), Maintaining Biodiversity in Forest Ecosystems (pp. 65- 94). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511613029.005Pan, Y., Birdsey, R. A., Phillips, O. L., Jackson, R. B. 2013. The Structure, Distribution, and Biomass of the World's Forests. Annual Review of Ecology, Evolution, and Systematics, 44(1), 593-622. https:// doi.org/10.1146/annurev-ecolsys-110512-135914Ruiz, L. A., Hermosilla, T., Mauro, F., Godino, M. 2014. Analysis of the influence of plot size and LiDAR density on forest structure attribute estimates. Forests, 5(5), 936-951. https://doi.org/10.3390/ f5050936Ruiz, L. Á., Recio, J. A., Crespo-Peremarch, P., Sapena, M. 2018. An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery. Geocarto International, 33(5), 443-457. https://doi.org/10.1080/10106049.2 016.1265595Scarascia-Mugnozza, G., Oswald, H., Piussi, P., Radoglou, K. 2000. Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecology and Management, 132(1), 97-109. https://doi.org/10.1016/S0378-1127(00)00383-2Shugart, H. H., Saatchi, S., Hall, F. G. 2010. Importance of structure and its measurement in quantifying function of forest ecosystems. Journal of Geophysical Research: Biogeosciences, 115(G2), n/a-n/a. https://doi.org/10.1029/2009JG000993Valbuena, P., Del Peso, C., Bravo, F. 2008. Stand Density Management Diagrams for two Mediterranean pine species in Eastern Spain. Investigación Agraria: Sistemas y Recursos Forestales, 17(2), 97. https:// doi.org/10.5424/srf/2008172-01026Valbuena, R., Maltamo, M., Packalen, P. 2016. Classification of forest development stages from national low-density lidar datasets: a comparison of machine learning methods. Revista de Teledetección, 45, 15-25. https://doi.org/10.4995/raet.2016.4029Vogeler, J. C., Cohen, W. B. 2016. A review of the role of active remote sensing and data fusion for characterizing forest in wildlife habitat models. Revista de Teledetección, 45, 1-14. https://doi.org/10.4995/raet.2016.3981West, P. W. 2009. Tree and Forest Measurement. Springer-Verlag Berlin Heidelberg (2nd ed.). Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-95966-3Wilkes, P., Lau, A., Disney, M., Calders, K., Burt, A., Gonzalez de Tanago, J., … Herold, M. 2017. Data acquisition considerations for Terrestrial Laser Scanning of forest plots. Remote Sensing of Environment, 196, 140-153. https://doi.org/10.1016/j.rse.2017.04.030Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., … Gobakken, T. 2012. Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 121, 196- 209. https://doi.org/10.1016/J.RSE.2012.02.001Zaldo, V., Moré, G., Pons, X. 2010. Estimación y cartografía de parámetros ecológicos y forestales en tres especies (Quercus ilex L. subsp ilex, Fagus sylvatica L. y Pinus halepensis L.) con datos LiDAR. Revista de Teledetección, 34, 55-68.Zeide, B. 2004. Stand Density and Canopy Gaps. In K. F. Connor (Ed.), Gen. Tech. Rep. SRS 71. US Department of Agriculture, Forest Service, Southern Research Station (pp. 79-183). Biloxi, Mississippi: USDA Forest Service Southern Research Station, Asheville, North Carolina.Zhang, J., de Gier, A., Xing, Y., Sohn, G. 2011. Full Waveform-based Analysis for Forest Type Information Derivation from Large Footprint Spaceborne Lidar Data. Photogrammetric Engineering & Remote Sensing, 77(3), 281-290. https://doi.org/10.14358/PERS.77.3.28

    Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data

    Full text link
    [EN] The use of laser scanning acquired from the air, or ground, holds great potential for the assessment of forest structural attributes, beyond conventional forest inventory. The use of full-waveform airborne laser scanning (ALSFW) data allows for the extraction of detailed information in different vertical strata compared to discrete ALS (ALSD). Terrestrial laser scanning (TLS) can register lower vertical strata, such as understory vegetation, without issues of canopy occlusion, however is limited in its acquisition over large areas. In this study we examine the ability of ALSFW to characterize understory vegetation (i.e. maximum and mean height, cover, and volume), verified using TLS point clouds in a Mediterranean forest in Eastern Spain. We developed nine full-waveform metrics to characterize understory vegetation attributes at two different scales (3.75¿m square subplots and circular plots with a radius of 15¿m); with, and without, application of a height filter to the data. Four understory vegetation attributes were estimated at plot level with high R2 values (mean height: R2¿=¿0.957, maximum height: R2¿=¿0.771, cover: R2¿=¿0.871, and volume: R2¿=¿0.951). The proportion of explained variance was slightly lower at 3.75¿m side cells (mean height: R2¿=¿0.633, maximum height: R2¿=¿0.470, cover: R2¿=¿0.581, and volume R2¿=¿0.651). These results indicate that Mediterranean understory vegetation can be estimated and accurately mapped over large areas with ALSFW. The future use of these types of predictions includes the estimation of ladder fuels, which drive key fire behavior in these ecosystems.This research was developed mainly in the Integrated Remote Sensing Studio (IRSS) of University of British Columbia (UBC) (Canada) as a result of the Erasmus + KA-107 mobility grant. The authors thank the financial support provided by the Spanish Ministerio de Economia y Competitividad and FEDER, in the framework of the project CGL2016-80705-R.Crespo-Peremarch, P.; Tompalski, P.; Coops, N.; Ruiz Fernández, LÁ. (2018). Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data. Remote Sensing of Environment. 217:400-413. https://doi.org/10.1016/j.rse.2018.08.033S40041321

    Comparing the generation of DTM in a forest ecosystem using TLS, ALS and UAV-DAP, and different software tools

    Full text link
    [EN] Remote sensing and photogrammetry techniques have demonstrated to be an important tool for the characterization of forest ecosystems. Nonetheless, the use of these techniques requires an accurate digital terrain model (DTM) for the height normalization procedure, which is a key step prior to any further analyses. In this manuscript, we assess the extraction of the DTM for different techniques (airborne laser scanning: ALS, terrestrial laser scanning: TLS, and digital aerial photogrammetry in unmanned aerial vehicle: UAV-DAP), processing tools with different algorithms (FUSION/LDV© and LAStools©), algorithm parameters, and plot characteristics (canopy and shrub cover, and terrain slope). To do this, we compare the resulting DTMs with one used as reference and extracted from classic surveying measurements. Our results demonstrate, firstly, that ALS and reference DTMs are similar in the different scenarios, except for steep slopes. Secondly, TLS DTMs are slightly less accurate than those extracted for ALS, since items such as trunks and shrubs cause a great occlusion due to the proximity of the instrument, and some of the points filtered as ground correspond to these items as well, therefore a finer setting of algorithm parameters is required. Lastly, DTMs extracted for UAV-DAP in dense canopy scenarios have a low accuracy, however, accuracy may be enhanced by modifying the processing tool and algorithm parameters. An accurate DTM is essential for further forestry applications, therefore, to know how to take advantage of the available data to obtain the most accurate DTM is also fundamental.The authors are thankful for the financial support provided by the Spanish Ministerio de Economía y Competitividad and FEDER, in the framework of the project CGL2016-80705-R.Crespo-Peremarch, P.; Torralba, J.; Carbonell-Rivera, JP.; Ruiz Fernández, LÁ. (2020). Comparing the generation of DTM in a forest ecosystem using TLS, ALS and UAV-DAP, and different software tools. ISPRS. 575-582. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-575-2020S57558

    Analyzing the role of pulse density and voxelization parameters on full-waveform LiDAR-derived metrics

    Full text link
    [EN] LiDAR full-waveform (LFW) pulse density is not homogeneous along study areas due to overlap between contiguous flight stripes and, to a lesser extent, variations in height, velocity and altitude of the platform. As a result, LFW-derived metrics extracted at the same spot but at different pulse densities differ, which is called ¿side-lap effect¿. Moreover, this effect is reflected in forest stand estimates, since they are predicted from LFW-derived metrics. This study was undertaken to analyze LFW-derived metric variations according to pulse density, voxel size and value assignation method in order to reduce the side-lap effect. Thirty LiDAR samples with a minimum density of 16 pulses.m¿2 were selected from the testing area and randomly reduced to 2 pulses.m¿2 with an interval of 1 pulse.m¿2, then metrics were extracted and compared for each sample and pulse density at different voxel sizes and assignation values. Results show that LFW-derived metric variations as a function of pulse density follow a negative exponential model similar to the exponential semivariogram curve, increasing sharply until they reach a certain pulse density, where they become stable. This value represents the minimum pulse density (MPD) in the study area to optimally minimize the side-lap effect. This effect can also be reduced with pulse densities lower than the MPD modifying LFW parameters (i.e. voxel size and assignation value). Results show that LFW-derived metrics are not equally influenced by pulse density, such as number of peaks (NP) and ROUGHness of the outermost canopy (ROUGH) that may be discarded for further analyses at large voxel sizes, given that they are highly influenced by pulse density. In addition, side-lap effect can be reduced by either increasing pulse density or voxel size, or modifying the assignation value. In practice, this leads to a proper estimate of forest stand variables using LFW data.This research has been funded by the Spanish Ministerio de Economia y Competitividad and FEDER, in the framework of the project CGL2016-80705-R. The authors also thank the Bureau of Land Management and the Panther Creek Remote Sensing and Research Cooperative Program for the data provided.Crespo-Peremarch, P.; Ruiz Fernández, LÁ.; Balaguer-Beser, Á.; Estornell Cremades, J. (2018). Analyzing the role of pulse density and voxelization parameters on full-waveform LiDAR-derived metrics. ISPRS Journal of Photogrammetry and Remote Sensing. 146:453-464. https://doi.org/10.1016/j.isprsjprs.2018.10.012S45346414

    An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery

    Full text link
    [EN] Mapping forest structure variables provides important information for the estimation of forest biomass, carbon stocks, pasture suitability or for wildfire risk prevention and control. The optimization of the prediction models of these variables requires an adequate stratification of the forest landscape in order to create specific models for each structural type or strata. This paper aims to propose and validate the use of an object-oriented classification methodology based on low-density LiDAR data (0.5 m−2) available at national level, WorldView-2 and Sentinel-2 multispectral imagery to categorize Mediterranean forests in generic structural types. After preprocessing the data sets, the area was segmented using a multiresolution algorithm, features describing 3D vertical structure were extracted from LiDAR data and spectral and texture features from satellite images. Objects were classified after feature selection in the following structural classes: grasslands, shrubs, forest (without shrubs), mixed forest (trees and shrubs) and dense young forest. Four classification algorithms (C4.5 decision trees, random forest, k-nearest neighbour and support vector machine) were evaluated using cross-validation techniques. The results show that the integration of low-density LiDAR and multispectral imagery provide a set of complementary features that improve the results (90.75% overall accuracy), and the object-oriented classification techniques are efficient for stratification of Mediterranean forest areas in structural- and fuel-related categories. Further work will be focused on the creation and validation of a different prediction model adapted to the various strata.This work was supported by the Spanish Ministerio de Economia y Competitividad and FEDER under [grant number CGL2013-46387-C2-1-R]; Fondo de Garantia Juvenil under [contract number PEJ-2014-A-45358].Ruiz Fernández, LÁ.; Recio Recio, JA.; Crespo-Peremarch, P.; Sapena, M. (2018). An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery. Geocarto International. 33(5):443-457. https://doi.org/10.1080/10106049.2016.1265595S44345733

    Analyzing TLS Scan Distribution and Point Density for the Estimation of Forest Stand Structural Parameters

    Full text link
    [EN] In recent decades, the feasibility of using terrestrial laser scanning (TLS) in forest inventories was investigated as a replacement for time-consuming traditional field measurements. However, the optimal acquisition of point clouds requires the definition of the minimum point density, as well as the sensor positions within the plot. This paper analyzes the effect of (i) the number and distribution of scans, and (ii) the point density on the estimation of seven forest parameters: above-ground biomass, basal area, canopy base height, dominant height, stocking density, quadratic mean diameter, and stand density index. For this purpose, 31 combinations of TLS scan positions, from a single scan in the center of the plot to nine scans, were analyzed in 28 circular plots in a Mediterranean forest. Afterwards, multiple linear regression models using height metrics extracted from the TLS point clouds were generated for each combination. In order to study the influence of terrain slope on the estimation of forest parameters, the analysis was performed by using all the plots and by creating two categories of plots according to their terrain slope (slight or steep). Results indicate that the use of multiple scans improves the estimation of forest parameters compared to using a single one, although using more than three to five scans does not necessarily improves the accuracy. Moreover, it is also shown that lower accuracies are obtained in plots with steep slope. In addition, it was observed that each forest parameter has a strategic distribution depending on the field of view of the TLS. Regarding the point density analysis, the use of 1% to 0.1% (¿136 points·m¿2) of the initial point cloud density (¿37,240.86 points·m¿2) generates an R2adj difference of less than 0.01. These findings are useful for planning more efficient forest inventories, reducing acquisition and processing time as well as costs.This research has been funded by the project PID2020-117808RB-C21 MCIN/AEI/10.13039/501100011033 and by the grant PEJ2018-002924-A Fondo de Garantia Juvenil en I+D+i ESF Investing in your future.Torralba, J.; Carbonell-Rivera, JP.; Ruiz Fernández, LÁ.; Crespo-Peremarch, P. (2022). Analyzing TLS Scan Distribution and Point Density for the Estimation of Forest Stand Structural Parameters. Forests. 13(12):1-22. https://doi.org/10.3390/f13122115122131

    Estudio comparativo de métodos de regresión para la predicción de variables de estructura y combustibilidad a partir de datos LiDAR full-waveform

    Get PDF
    Revista oficial de la Asociación Española de Teledetección[EN] Regression methods are widely employed in forestry to predict and map structure and canopy fuel variables. We present a study where several regression models (linear, non-linear, regression trees and ensemble) were assessed. Independent variables were calculated using metrics extracted from full-waveform LiDAR data, while the reference data used to generate the dependent variables for the prediction models were obtained from fieldwork in 78 plots of 16 m radius. Transformations of dependent and independent variables with feature selection were carried out to assess their influence in the prediction of response variables. In order to evaluate significant differences and rank regression models we used the non-parametric tests Wilcoxon and Friedman, and post-hoc analysis or post-hoc pairwise multiple comparison tests, such as Nemenyi, for Friedman test. Regressions using transformation of the dependent variable, like square-root or logarithmic, or the independent variable, increased R2 up to 6% with respect to linear regression using unprocessed response variables. CART (Classification and Regression Tree) method provided poor results, but it may be interesting for categorisation purposes. Square-root transformation of the dependent variable is the method having the best overall results, except for stand volume. However, not always has a significant improvement with respect to other regression methods.[ES] Los métodos de regresión se utilizan ampliamente en el ámbito forestal para la predicción y el cartografiado de las variables de estructura y combustibilidad. En este artículo se evalúan diferentes modelos de regresión (lineal, no lineal, árboles de regresión y ensemble). Como variables independientes se utilizaron métricas extraídas de datos LiDAR full-waveform, mientras que los valores de las variables dependientes se generaron a partir de modelos basados en datos de campo obtenidos para 78 parcelas de 16 m de radio. Se llevaron a cabo transformaciones de las variables dependientes e independientes con selección de atributos para evaluar su influencia en la predicción de la variable respuesta. Con el fin de verificar diferencias significativas y ordenar los modelos de regresión se emplearon los tests no paramétricos de Wilcoxon y Friedman, y el análisis post-hoc o los tests de comparación post-hoc por pares, como el de Nemenyi, para el test de Friedman. Las regresiones basadas en la transformación de la variable dependiente, como raíz cuadrada o logaritmo, o en la transformación de las variables independientes, obtuvieron un incremento de la R2 de hasta un 6% con respecto a la regresión lineal. Mediante el método CART (Classification and Regression Tree) se obtuvieron resultados discretos, si bien su uso puede estar indicado para la categorización o estratificación. Con el método basado en la transformación de la variable dependiente mediante raíz cuadrada se consiguieron los mejores resultados comparativos en la predicción de variables forestales, excepto para el volumen. Sin embargo, su uso no siempre implica una mejora significativa con respecto a los otros métodos de regresión usados en este trabajo.This research has been funded by the Spanish Ministerio de Economía y Competitividad and FEDER, in the framework of the project CGL2013-46387-C2-1-R.Crespo-Peremarch, P.; Ruiz, L.; Balaguer-Beser, A. (2016). A comparative study of regression methods to predict forest structure and canopy fuel variables from LiDAR full-waveform data. Revista de Teledetección. (Special Issue):27-40. https://doi.org/10.4995/raet.2016.4066SWORD2740Special Issu
    corecore