3,691 research outputs found

    The phosphodiesterase 5 inhibitor sildenafil decreases the proinflammatory chemokine IL-8 in diabetic cardiomyopathy: in vivo and in vitro evidence

    Get PDF
    Purpose: Interleukin (IL)-8 is a proinflammatory C-X-C chemokine involved in inflammation underling cardiac diseases, primary or in comorbid condition, such diabetic cardiomyopathy (DCM). The phosphodiesterase type 5 inhibitor sildenafil can ameliorate cardiac conditions by counteracting inflammation. The study aim is to evaluate the effect of sildenafil on serum IL-8 in DCM subjects vs. placebo, and on IL-8 release in human endothelial cells (Hfaec) and peripheral blood mononuclear cells (PBMC) under inflammatory stimuli. Methods: IL-8 was quantified: in sera of (30) DCM subjects before (baseline) and after sildenafil (100 mg/day, 3-months) vs. (16) placebo and (15) healthy subjects, by multiplatform array; in supernatants from inflammation-challenged cells after sildenafil (1 ÂµM), by ELISA. Results: Baseline IL-8 was higher in DCM vs. healthy subjects (149.14 ± 46.89 vs. 16.17 ± 5.38 pg/ml, p < 0.01). Sildenafil, not placebo, significantly reduced serum IL-8 (23.7 ± 5.9 pg/ml, p < 0.05 vs. baseline). Receiver operating characteristic (ROC) curve for IL-8 was 0.945 (95% confidence interval of 0.772 to 1.0, p < 0.01), showing good capacity of discriminating the response in terms of drug-induced IL-8 decrease (sensitivity of 0.93, specificity of 0.90). Sildenafil significantly decreased IL-8 protein release by inflammation-induced Hfaec and PBMC and downregulated IL-8 mRNA in PBMC, without affecting cell number or PDE5 expression. Conclusion: Sildenafil might be suggested as potential novel pharmacological tool to control DCM progression through IL-8 targeting at systemic and cellular level

    Cardiomyopathy associated with diabetes. the central role of the cardiomyocyte

    Get PDF
    The term diabetic cardiomyopathy (DCM) labels an abnormal cardiac structure and performance due to intrinsic heart muscle malfunction, independently of other vascular co-morbidity. DCM, accounting for 50%-80% of deaths in diabetic patients, represents a worldwide problem for human health and related economics. Optimal glycemic control is not sufficient to prevent DCM, which derives from heart remodeling and geometrical changes, with both consequences of critical events initially occurring at the cardiomyocyte level. Cardiac cells, under hyperglycemia, very early undergo metabolic abnormalities and contribute to T helper (Th)-driven inflammatory perturbation, behaving as immunoactive units capable of releasing critical biomediators, such as cytokines and chemokines. This paper aims to focus onto the role of cardiomyocytes, no longer considered as "passive" targets but as "active" units participating in the inflammatory dialogue between local and systemic counterparts underlying DCM development and maintenance. Some of the main biomolecular/metabolic/inflammatory processes triggered within cardiac cells by high glucose are overviewed; particular attention is addressed to early inflammatory cytokines and chemokines, representing potential therapeutic targets for a prompt early intervention when no signs or symptoms of DCM are manifesting yet. DCM clinical management still represents a challenge and further translational investigations, including studies at female/male cell level, are warranted

    A systematic review of the risk factors for clinical response to opioids for all-age patients with cancer-related pain and presentation of the paediatric STOP pain study

    Get PDF
    Inter-patient variability in response to opioids is well known but a comprehensive definition of its pathophysiological mechanism is still lacking and, more importantly, no studies have focused on children. The STOP Pain project aimed to evaluate the risk factors that contribute to clinical response and adverse drug reactions to opioids by means of a systematic review and a clinical investigation on paediatric oncological patients
    • …
    corecore