474 research outputs found

    Multigrid solver for axisymmetrical 2D fluid equations

    Full text link
    We have developed an efficient algorithm for steady axisymmetrical 2D fluid equations. The algorithm employs multigrid method as well as standard implicit discretization schemes for systems of partial differential equations. Linearity of the multigrid method with respect to the number of grid points allowed us to use 256×256256\times 256 grid, where we could achieve solutions in several minutes. Time limitations due to nonlinearity of the system are partially avoided by using multi level grids(the initial solution on 256×256256\times 256 grid was extrapolated steady solution from 128×128128\times 128 grid which allowed using "long" integration time steps). The fluid solver may be used as the basis for hybrid codes for DC discharges.Comment: preliminary version; presented at 28 ICPIG, July 15-20, 2007, Prague, Czech Republi

    Antioxidant activities of hydroxylated naphthalenes: the role of aryloxyl radicals

    Get PDF
    Herein is delineated a first systematic framework for the definition of structure-antioxidant property relationships in the dihydroxynaphthalene (DHN) series. The results obtained by a combined experimental and theoretical approach revealed that 1,8-DHN is the best performing antioxidant platform, with its unique hydrogen-bonded peri-hydroxylation pattern contributing to a fast H atom transfer process. Moreover, the comparative analysis of the antioxidant properties of DHNs carried out by performing DPPH and FRAP assays and laser flash photolysis experiments, revealed the higher antioxidant power associated with an α-substitution pattern (i. e. in 1,8- and 1,6-DHN) with respect to DHNs exhibiting a β-substitution pattern (i. e. in 2,6- and 2,7-DHN). DFT calculations and isolation and characterization of the main oligomer intermediates formed during the oxidative polymerization of DHNs supported this evidence by providing unprecedented insight into the generation and fate of the intermediate naphthoxyl radicals, which emerged as the main factor governing the antioxidant activity of DHNs

    Photoresponse from noble metal nanoparticles-multi walled carbon nanotube composites

    Get PDF
    In this Letter, we investigated the photo-response of multi wall carbon nanotube-based composites obtained from in situ thermal evaporation of noble metals (Au, Ag, and Cu) on the nanotube films. The metal deposition process produced discrete nanoparticles on the nanotube outer walls. The nanoparticle-carbon nanotube films were characterized by photo-electrochemical measurements in a standard three electrode cell. The photocurrent from the decorated carbon nanotubes remarkably increased with respect to that of bare multiwall tubes. With the aid of first-principle calculations, these results are discussed in terms of metal nanoparticle–nanotube interactions and electronic charge transfer at the interface.VC 2012 American Institute of Physics

    HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis

    Get PDF
    Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis

    Barriers to Coordination? Examining the Impact of Culture on International Mediation Occurrence and Effectiveness

    Get PDF
    ‘Culture’ features prominently in the literature on international mediation: if belligerents share cultural characteristics, they are likely to have a common understanding and norms. This creates a common identity and makes coordination less costly, which ultimately facilitates mediation occurrence and effectiveness. Surprisingly, existing quantitative research largely neglects any cultural ties the antagonists might share with the mediator. This article addresses this gap by offering one of the first joint analyses of fighting parties’ and mediators’ culture – and the interaction thereof. Based on existing work, a theoretical framework for mediation occurrence and effectiveness is developed and innovative measures for belligerents’ cultural ties and the links to the mediator are used. Contrary to expectations the results suggest that larger cultural distances between antagonists make mediation more likely, while cultural dissimilarities between them and the mediator have the opposite effect. Evidence is also found for a conditional effect between the two culture variables on mediation occurrence

    Determinants of frontline tyrosine kinase inhibitor choice for patients with chronic-phase chronic myeloid leukemia: A study from the Registro Italiano LMC and Campus CML

    Get PDF
    BackgroundImatinib, dasatinib, and nilotinib are tyrosine kinase inhibitors (TKIs) approved in Italy for frontline treatment of chronic-phase chronic myeloid leukemia (CP-CML). The choice of TKI is based on a combined evaluation of the patient's and the disease characteristics. The aim of this study was to analyze the use of frontline TKI therapy in an unselected cohort of Italian patients with CP-CML to correlate the choice with the patient's features. MethodsA total of 1967 patients with CP-CML diagnosed between 2012 and 2019 at 36 centers throughout Italy were retrospectively evaluated; 1089 patients (55.4%) received imatinib and 878 patients (44.6%) received a second-generation (2G) TKI. ResultsSecond-generation TKIs were chosen for most patients aged <45 years (69.2%), whereas imatinib was used in 76.7% of patients aged >65 years (p < .001). There was a predominant use of imatinib in intermediate/high European long-term survival risk patients (60.0%/66.0% vs. 49.7% in low-risk patients) and a limited use of 2G-TKIs in patients with comorbidities such as hypertension, diabetes, chronic obstructive pulmonary disease, previous neoplasms, ischemic heart disease, or stroke and in those with >3 concomitant drugs. We observed a greater use of imatinib (61.1%) in patients diagnosed in 2018-2019 compared to 2012-2017 (53.2%; p = .002). In multivariable analysis, factors correlated with imatinib use were age > 65 years, spleen size, the presence of comorbidities, and & GE;3 concomitant medications. ConclusionsThis observational study of almost 2000 cases of CML shows that imatinib is the frontline drug of choice in 55% of Italian patients with CP-CML, with 2G-TKIs prevalently used in younger patients and in those with no concomitant clinical conditions. Introduction of the generic formulation in 2018 seems to have fostered imatinib use
    • …
    corecore