1,772 research outputs found
Uso do ultra-som em programas de reprodução de peixes nativos
bitstream/CPAP/56070/1/COT62.pdfFormato eletrônic
Ultrafast Optical Control of the Electronic Properties of
We report on the temperature dependence of the electronic
properties, studied at equilibrium and out of equilibrium, by means of time and
angle resolved photoelectron spectroscopy. Our results unveil the dependence of
the electronic band structure across the Fermi energy on the sample
temperature. This finding is regarded as the dominant mechanism responsible for
the anomalous resistivity observed at T* 160 K along with the change of
the charge carrier character from holelike to electronlike. Having addressed
these long-lasting questions, we prove the possibility to control, at the
ultrashort time scale, both the binding energy and the quasiparticle lifetime
of the valence band. These experimental evidences pave the way for optically
controlling the thermoelectric and magnetoelectric transport properties of
Ultrafast photodoping and effective Fermi-Dirac distribution of the Dirac particles in Bi2Se3
We exploit time- and angle- resolved photoemission spectroscopy to determine
the evolution of the out-of-equilibrium electronic structure of the topological
insulator Bi2Se. The response of the Fermi-Dirac distribution to ultrashort IR
laser pulses has been studied by modelling the dynamics of the hot electrons
after optical excitation. We disentangle a large increase of the effective
temperature T* from a shift of the chemical potential mu*, which is consequence
of the ultrafast photodoping of the conduction band. The relaxation dynamics of
T* and mu* are k-independent and these two quantities uniquely define the
evolution of the excited charge population. We observe that the energy
dependence of the non-equilibrium charge population is solely determined by the
analytical form of the effective Fermi-Dirac distribution.Comment: 5 Pages, 3 Figure
Mammalian models of extended healthy lifespan
Over the last two centuries, there has been a significant increase in average lifespan expectancy in the developed world. One unambiguous clinical implication of getting older is the risk of experiencing age-related diseases including various cancers, dementia, type-2 diabetes, cataracts and osteoporosis. Historically, the ageing process and its consequences were thought to be intractable. However, over the last two decades or so, a wealth of empirical data has been generated which demonstrates that longevity in model organisms can be extended through the manipulation of individual genes. In particular, many pathological conditions associated with the ageing process in model organisms, and importantly conserved from nematodes to humans, are attenuated in long-lived genetic mutants. For example, several long-lived genetic mouse models show attenuation in age-related cognitive decline, adiposity, cancer and glucose intolerance. Therefore, these long-lived mice enjoy a longer period without suffering the various sequelae of ageing. The greatest challenge in the biology of ageing is to now identify the mechanisms underlying increased healthy lifespan in these model organisms. Given that the elderly are making up an increasingly greater proportion of society, this focused approach in model organisms should help identify tractable interventions that can ultimately be translated to humans
Ag-coverage-dependent symmetry of the electronic states of the Pt(111)-Ag-Bi interface: The ARPES view of a structural transition
We studied by angle-resolved photoelectron spectroscopy the strain-related
structural transition from a pseudomorphic monolayer (ML) to a striped
incommensurate phase in an Ag thin film grown on Pt(111). We exploited the
surfactant properties of Bi to grow ordered Pt(111)-xMLAg-Bi trilayers with 0 <
x < 5 ML, and monitored the dispersion of the Bi-derived interface states to
probe the structure of the underlying Ag film. We find that their symmetry
changes from threefold to sixfold and back to threefold in the Ag coverage
range studied. Together with previous scanning tunneling microscopy and
photoelectron diffraction data, these results provide a consistent microscopic
description of the coverage-dependent structural transition.Comment: 10 pages, 9 figure
Enhancer SINEs Link Pol III to Pol II Transcription in Neurons
Spatiotemporal regulation of gene expression depends on the cooperation of multiple mechanisms, including the functional interaction of promoters with distally located enhancers. Here, we show that, in cortical neurons, a subset of short interspersed nuclear elements (SINEs) located in the proximity of activity-regulated genes bears features of enhancers. Enhancer SINEs (eSINEs) recruit the Pol III cofactor complex TFIIIC in a stimulus-dependent manner and are transcribed by Pol III in response to neuronal depolarization. Characterization of an eSINE located in proximity to the Fos gene (FosRSINE1) indicated that the FosRSINE1-encoded transcript interacts with Pol II at the Fos promoter and mediates Fos relocation to Pol II factories, providing an unprecedented molecular link between Pol III and Pol II transcription. Strikingly, knockdown of the FosRSINE1 transcript induces defects of both cortical radial migration in vivo and activity-dependent dendritogenesis in vitro, demonstrating that FosRSINE1 acts as a strong enhancer of Fos expression in diverse physiological contexts
Giant ambipolar Rashba effect in a semiconductor: BiTeI
We observe a giant spin-orbit splitting in bulk and surface states of the
non-centrosymmetric semiconductor BiTeI. We show that the Fermi level can be
placed in the valence or in the conduction band by controlling the surface
termination. In both cases it intersects spin-polarized bands, in the
corresponding surface depletion and accumulation layers. The momentum splitting
of these bands is not affected by adsorbate-induced changes in the surface
potential. These findings demonstrate that two properties crucial for enabling
semiconductor-based spin electronics -- a large, robust spin splitting and
ambipolar conduction -- are present in this material.Comment: 4 pages, 3 figure
Predictive value of hematological and phenotypical parameters on postchemotherapy leukocyte recovery
Background: Grade IV chemotherapy toxicity is defined as absolute neutrophil count <500/μL. The nadir is considered as the lowest neutrophil number following chemotherapy, and generally is not expected before the 7th day from the start of chemotherapy. The usual prophylactic dose of rHu-G-CSF (Filgrastim) is 300 μg/day, starting 24-48 h after chemotherapy until hematological recovery. However, individual patient response is largely variable, so that rHu-G-CSF doses can be different. The aim of this study was to verify if peripheral blood automated flow cytochemistry and flow cytometry analysis may be helpful in predicting the individual response and saving rHu-G-CSF. Methods: During Grade IV neutropenia, blood counts from 30 cancer patients were analyzed daily by ADVIA 120 automated flow cytochemistry analyzer and by Facscalibur flow cytometer till the nadir. "Large unstained cells" (LUCs), myeloperoxidase index (MPXI), blasts, and various cell subpopulations in the peripheral blood were studied. At nadir rHu-G-CSF was started and 81 chemotherapy cycles were analyzed. Cycles were stratified according to their number and to two dose-levels of rHuG-CSF needed to recovery (300-600 vs. 900-1200 μg) and analyzed in relation to mean values of MPXI and mean absolute number of LUCs in the nadir phase. The linear regressions of LUCs % over time in relation to two dose-levels of rHu-G-CSF and uni-multivariate analysis of lymphocyte subpopulations, CD34+ cells, MPXI, and blasts were also performed. Results: In the nadir phase, the increase of MPXI above the upper limit of normality (>10; median 27.7), characterized a slow hematological recovery. MPXI levels were directly related to the cycle number and inversely related to the absolute number of LUCs and CD34 +/CD45+ cells. A faster hematological recovery was associated with a higher LUC increase per day (0.56% vs. 0.25%), higher blast (median 36.7/μL vs. 19.5/μL) and CD34+/CD45+ cell (median 2.2/μL vs. 0.82/μL) counts. Conclusions: Our study showed that some biological indicators such as MPXI, LUCs, blasts, and CD34 +/CD45+ cells may be of clinical relevance in predicting individual hematological response to rHu-G-CSF. Special attention should be paid when nadir MPXI exceeds the upper limit of normality because the hematological recovery may be delayed. © 2009 Clinical Cytometry Society
The momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X = I, Br, Cl)
Bulk Rashba systems BiTeX (X = I, Br, Cl) are emerging as important
candidates for developing spintronics devices, because of the coexistence of
spin-split bulk and surface states, along with the ambipolar character of the
surface charge carriers. The need of studying the spin texture of strongly
spin-orbit coupled materials has recently promoted circular dichroic Angular
Resolved Photoelectron Spectroscopy (cd-ARPES) as an indirect tool to measure
the spin and the angular degrees of freedom. Here we report a detailed photon
energy dependent study of the cd-ARPES spectra in BiTeX (X = I, Br and Cl). Our
work reveals a large variation of the magnitude and sign of the dichroism.
Interestingly, we find that the dichroic signal modulates differently for the
three compounds and for the different spin-split states. These findings show a
momentum and photon energy dependence for the cd-ARPES signals in the bulk
Rashba semiconductor BiTeX (X = I, Br, Cl). Finally, the outcome of our
experiment indicates the important relation between the modulation of the
dichroism and the phase differences between the wave-functions involved in the
photoemission process. This phase difference can be due to initial or final
state effects. In the former case the phase difference results in possible
interference effects among the photo-electrons emitted from different atomic
layers and characterized by entangled spin-orbital polarized bands. In the
latter case the phase difference results from the relative phases of the
expansion of the final state in different outgoing partial waves.Comment: 6 pages, 4 figure
- …
