27 research outputs found

    Methacholine bronchial provocation measured by spirometry versus wheeze detection in preschool children

    Get PDF
    BACKGROUND: Determination of PC(20)-FEV(1) during Methacholine bronchial provocation test (MCT) is considered to be impossible in preschool children, as it requires repetitive spirometry sets. The aim of this study was to assess the feasibility of determining PC(20)-FEV(1) in preschool age children and compares the results to the wheeze detection (PCW) method. METHODS: 55 preschool children (ages 2.8–6.4 years) with recurrent respiratory symptoms were recruited. Baseline spirometry and MCT were performed according to ATS/ERS guidelines and the following parameters were determined at baseline and after each inhalation: spirometry-indices, lung auscultation at tidal breathing, oxygen saturation, respiratory and heart rate. Comparison between PCW and PC(20)-FEV(1) and clinical parameters at these end-points was done by paired Student's t-tests. RESULTS AND DISCUSSION: Thirty-six of 55 children (65.4%) successfully performed spirometry-sets up to the point of PCW. PC(20)-FEV(1) occurred at a mean concentration of 1.70+/-2.01 while PCW occurred at a mean concentration of 4.37+/-3.40 mg/ml (p < 0.05). At PCW, all spirometry-parameters were markedly reduced: FVC by 41.3+/-16.4% (mean +/-SD); FEV(1) by 44.7+/-14.5%; PEFR by 40.5+/-14.5 and FEF(25–75) by 54.7+/-14.4% (P < 0.01 for all parameters). This reduction was accompanied by de-saturation, hyperpnoea, tachycardia and a response to bronchodilators. CONCLUSION: Determination of PC(20)-FEV(1) by spirometry is feasible in many preschool children. PC(20)-FEV(1) often appears at lower provocation dose than PCW. The lower dose may shorten the test and encourage participation. Significant decrease in spirometry indices at PCW suggests that PC(20)-FEV(1) determination may be safer

    Matrix metalloproteinase inhibition protects rat livers from prolonged cold ischemia-warm reperfusion injury

    No full text
    Matrix metalloproteinases (MMPs) have been implicated in the hepatic injury induced after cold ischemia-warm reperfusion (CI-WR), by altering the extracellular matrix (ECM), but their precise role remains unknown. The hepatic MMP expression was evaluated after 2 conditions of CI (4°C for 24 and 42 hours: viable and nonviable livers) followed by different periods of WR, using isolated perfused rat livers. CI-WR induced moderate changes in hepatic MMP transcript levels not influenced by CI duration, whereas gelatinase activities accumulated in liver effluents. Therefore, the protective effect of a new phosphinic MMP inhibitor, RXP409, was tested after prolonged CI. RXP409 (10 μM) was added to the University of Wisconsin solution, and livers were preserved for 42 hours (4°C), then reperfused for 1 hour in Krebs solution (37°C), containing 20% erythrocytes. Liver viability parameters were recorded, and the extent of cell necrosis was evaluated on liver biopsies, using trypan blue nuclear uptake. Treatment with RXP409 significantly improved liver function (transaminase release and bile secretion) and liver injury. In particular, the MMP inhibitor significantly modified the extent of cell death from large clusters of necrotic hepatocytes as found in control livers (2%-60% of liver biopsies; mean, 26% ± 9%) to isolated necrotic hepatocytes as found in treated livers (0.2%-12%; mean, 3% ± 2%) (P &lt; 0.05). Conclusion: These data demonstrate that MMPs, by altering the ECM, play a major role in liver CI-WR injury leading to extensive hepatocyte necrosis and that their inhibition might prove to be a new strategy in improving preservation solutions. Copyright © 2007 by the American Association for the Study of Liver Diseases

    Reference values of Forced Expiratory Volumes and pulmonary flows in 3–6 year children: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims of this study were to verify the feasibility of respiratory function tests and to assess their validity in the diagnosis of respiratory disorders in young children.</p> <p>Methods</p> <p>We performed spirometry and collected information on health and parents' lifestyle on a sample of 960 children aged 3–6.</p> <p>Results</p> <p>The cooperation rate was 95.3%. Among the valid tests, 3 or more acceptable curves were present in 93% of cases. The variability was 5% within subjects in 90.8% of cases in all the parameters. We propose regression equations for FVC (Forced Vital Capacity), FEV1, FEV0.5, FEV0.75 (Forced Expiratory Volume in one second, in half a second and in 3/4 of a second), and for Maximum Expiratory Flows at different lung volume levels (MEF75, 50, 25). All parameters are consistent with the main reference values reported in literature. The discriminating ability of respiratory parameters versus symptoms always shows a high specificity (>95%) and a low sensitivity (<20%) with the highest OR (10.55; IC95% 4.42–25.19) for MEF75. The ability of FEV0.75 to predict FEV1 was higher than that of FEV0.50: FEV0.75 predicts FEV1 with a determination coefficient of 0.95.</p> <p>Conclusion</p> <p>Our study confirms the feasibility of spirometry in young children; however some of the current standards are not well suited to this age group. Moreover, in this restricted age group the various reference values have similar behaviour.</p
    corecore