150 research outputs found

    Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates

    Get PDF
    Entomopathogenic fungi are potent biocontrol agents that are widely used against insect pests, many of which are social insects. Nevertheless, theoretical investigations of their particular life history are scarce. We develop a model that takes into account the main distinguishing features between traditionally studied diseases and obligate killing pathogens, like the (biocontrol-relevant) insect-pathogenic fungi Metarhizium and Beauveria. First, obligate killing entomopathogenic fungi produce new infectious particles (conidiospores) only after host death and not yet on the living host. Second, the killing rates of entomopathogenic fungi depend strongly on the initial exposure dosage, thus we explicitly consider the pathogen load of individual hosts. Further, we make the model applicable not only to solitary host species, but also to group living species by incorporating social interactions between hosts, like the collective disease defences of insect societies. Our results identify the optimal killing rate for the pathogen that minimises its invasion threshold. Furthermore, we find that the rate of contact between hosts has an ambivalent effect: dense interaction networks between individuals are considered to facilitate disease outbreaks because of increased pathogen transmission. In social insects, this is compensated by their collective disease defences, i.e., social immunity. For the type of pathogens considered here, we show that even without social immunity, high contact rates between live individuals dilute the pathogen in the host colony and hence can reduce individual pathogen loads below disease-causing levels

    The role of chemical cues for antiseptic behaviours in ants

    Get PDF
    Contains fulltext : 141464.pdf (Publisher’s version ) (Open Access)KUN, 06 december 2002Promotores : Cremers, C.W.R.J., Zielhuis, G.A. Co-promotor : Ingels, K.J.A.O

    Invasive Ameisen in Europa: Wie sie sich ausbreiten und die heimische Fauna verändern

    Get PDF
    The social insects bees, wasps, ants, and termites are species-rich, occur in many habitats, and often constitute a large part of the biomass. Many are also invasive, including species of termites, the red imported fire ant, and the Argentine ant. While invasive social insects have been a problem in Southern Europe for some time, Central Europa was free of invasive ant species until recently because most ants are adapted to warmer climates. Only in the 1990s, did Lasius neglectus, a close relative of the common black garden ant, arrive in Germany. First described in 1990 based on individuals collected in Budapest, the species has since been detected for example in France, Germany, Spain, England, and Kyrgyzstan. The species is spread with soil during construction work or plantings, and L. neglectus therefore is often found in parks and botanical gardens. Another invasive ant now spreading in southern Germany is Formica fuscocinerea, which occurs along rivers, including in the sandy floodplains of the river Isar. As is typical of pioneer species, F. fuscocinerea quickly becomes extremely abundant and therefore causes problems for example on playgrounds in Munich. All invasive ant species are characterized by cooperation across nests, leading to strongly interconnected, very large super-colonies. The resulting dominance results in the extinction of native ant species as well as other arthropod species and thus in the reduction of biodiversity

    The dynamics of male-male competition in Cardiocondyla obscurior ants

    Get PDF
    BACKGROUND: The outcome of male-male competition can be predicted from the relative fighting qualities of the opponents, which often depend on their age. In insects, freshly emerged and still sexually inactive males are morphologically indistinct from older, sexually active males. These young inactive males may thus be easy targets for older males if they cannot conceal themselves from their attacks. The ant Cardiocondyla obscurior is characterised by lethal fighting between wingless (“ergatoid”) males. Here, we analyse for how long young males are defenceless after eclosion, and how early adult males can detect the presence of rival males. RESULTS: We found that old ergatoid males consistently won fights against ergatoid males younger than two days. Old males did not differentiate between different types of unpigmented pupae several days before emergence, but had more frequent contact to ready-to-eclose pupae of female sexuals and winged males than of workers and ergatoid males. In rare cases, old ergatoid males displayed alleviated biting of pigmented ergatoid male pupae shortly before adult eclosion, as well as copulation attempts to dark pupae of female sexuals and winged males. Ergatoid male behaviour may be promoted by a closer similarity of the chemical profile of ready-to-eclose pupae to the profile of adults than that of young pupae several days prior to emergence. CONCLUSION: Young ergatoid males of C. obscurior would benefit greatly by hiding their identity from older, resident males, as they are highly vulnerable during the first two days of their adult lives. In contrast to the winged males of the same species, which are able to prevent ergatoid male attacks by chemical female mimicry, young ergatoids do not seem to be able to produce a protective chemical profile. Conflicts in male-male competition between ergatoid males of different age thus seem to be resolved in favour of the older males. This might represent selection at the colony level rather than the individual level

    Ant queens increase their reproductive efforts after pathogen infection

    Get PDF
    Infections with potentially lethal pathogens may negatively affect an individual’s lifespan and decrease its reproductive value. The terminal investment hypothesis predicts that individuals faced with a reduced survival should invest more into reproduction instead of maintenance and growth. Several studies suggest that individuals are indeed able to estimate their body condition and to increase their reproductive effort with approaching death, while other studies gave ambiguous results. We investigate whether queens of a perennial social insect (ant) are able to boost their reproduction following infection with an obligate killing pathogen. Social insect queens are special with regard to reproduction and aging, as they outlive conspecific non-reproductive workers. Moreover, in the ant Cardiocondyla obscurior, fecundity increases with queen age. However, it remained unclear whether this reflects negative reproductive senescence or terminal investment in response to approaching death. Here, we test whether queens of C. obscurior react to infection with the entomopathogenic fungus Metarhizium brunneum by an increased egg-laying rate. We show that a fungal infection triggers a reinforced investment in reproduction in queens. This adjustment of the reproductive rate by ant queens is consistent with predictions of the terminal investment hypothesis and is reported for the first time in a social insect
    corecore