455 research outputs found
Analysis of chromosomes in molecular tumor and radiation cytogenetics: Approaches, apllications, perspectives
Detection of laser-UV microirradiation-induced DNA photolesions by immunofluorescent staining
A low-power laser-UV microbeam of wave-length 257 nm was used for microirradiation of a small part of the nucleus of Chinese hamster cells. Following fixation in interphase or in the subsequent metaphase indirect immunofluorescent staining was performed with antiserum to photoproducts of DNA treated with far UV light.
The results show that antibodies specific for UV-irradiated DNA can be used for a direct detection of laser-UV microirradiation-induced DNA photolesions. The potential usefulness of this method for investigation of the spatial arrangement of chromosomes in the interphase nucleus is discussed
Effects of Laser UV-Microirradiation (λ = 2573 A) on Proliferation of Chinese Hamster Cells
A laser uv-microbeam with a wavelength of 2573 Å having a minimum spot diameter of approx 0.5 μm was used to microirradiate interphase cells of a V-79 subline of Chinese hamster cells. The incident energy necessary to induce a significant decrease of proliferation was 30 to 60 times larger after microirradiation of cytoplasm as compared with microirradiation of nucleoplasm. The mean value of relative cell numbers 40 hr after irradiation as a function of incident energy did not differ whether the cells were microirradiated lying singly or together in small groups. Analysis of individual growth curves of singly lying cells microirradiated in the nucleoplasm with the same energy showed heterogeneous reactions. The incident energy per cell compatible with proliferation of about 50% of the cells after microirradiation of nucleoplasm was approx. 2× 10sup-3/sup ergs. From this value it is suggested that the energy density within the focus was in the region of several thousand ergs per square millimeter. Photochemical effects are thought to be the cause of growth disturbance, while thermal effects are excluded
Correlation between interphase and metaphase chromosome arrangements as studied by laser-uv-microbeam experiments
A continuous wave ultraviolet laser microbeam and its use for studies in somatic cell genetics
Rapid metaphase and interphase detection of radiation-induced chromosome aberrations in human lymphocytes by chromosomal suppression in situ hybridization
Chromosomal in situ suppression (CISS)-hybridization of biotinylated phage DNA-library inserts from sorted human chromosomes was used to decorate chromosomes 1 and 7 specifically from pter to qter and to detect structural aberrations of these chromosomes in irradiated human peripheral lymphocytes. In addition, probe pUC1.77 was used to mark the Iq12 subregion in normal and aberrant chromosomes 1. Low LET radiation (60Co--rays; 1.17 and 1.33 MeV) of lymphocyte cultures was performed with various doses (D = 0, 2, 4, 8 Gy) 5 h after stimulation with phytohaemagglutinin. Irradiated cells were cultivated for an additional 67 h before Colcemid arrested metaphase spreads were obtained. Aberrations of the specifically stained chromosomes, such as deletions, dicentrics, and rings, were readily scored after in situ hybridization with either the 1q12 specific probe or DNA-library inserts. By the latter approach, translocations of the specifically stained chromosomes could also be reliably assessed. A linear increase of the percentage of specifically stained aberrant chromosomes was observed when plotted as a function of the square of the dose D. A particular advantage of this new approach is provided by the possibility to delineate numerical and structural chromosome aberrations directly in interphase nuclei. These results indicate that cytogenetic monitoring of ionizing radiation may be considerably facilitated by CISS-hybridization
- …
