211 research outputs found

    Nerves are more abundant than blood vessels in the degenerate human intervertebral disc

    Get PDF
    Chronic low back pain (LBP) is the most common cause of disability worldwide. New ideas surrounding LBP are emerging that are based on interactions between mechanical, biological and chemical influences on the human IVD. The degenerate IVD is proposed to be innervated by sensory nerve fibres and vascularised by blood vessels, and it is speculated to contribute to pain sensation. However, the incidence of nerve and blood vessel ingrowth, as well as whether these features are always associated, is unknown. We investigated the presence of nerves and blood vessels in the nucleus pulposus (NP) of the IVD in a large population of human discs

    A Modular Albumin-Oligonucleotide Biomolecular Assembly for Delivery of Antisense Therapeutics

    Get PDF
    Antisense nucleic acid drugs are susceptible to nuclease degradation, rapid renal clearance, and short circulatory half-life. In this work, we introduce a modular-based recombinant human albumin-oligonucleotide (rHA-cODN) biomolecular assembly that allows incorporation of a chemically stabilized therapeutic gapmer antisense oligonucleotide (ASO) and FcRn-driven endothelial cellular recycling. A phosphodiester ODN linker (cODN) was conjugated to recombinant human albumin (rHA) using maleimide chemistry, after which a complementary gapmer ASO, targeting ADAMTS5 involved in osteoarthritis pathogenesis, was annealed. The rHA-cODN/ASO biomolecular assembly production, fluorescence labeling, and purity were confirmed using polyacrylamide gel electrophoresis. ASO release was triggered by DNase-mediated degradation of the linker strand, reaching 40% in serum after 72 h, with complete release observed following 30 min of incubation with DNase. Cellular internalization and trafficking of the biomolecular assembly using confocal microscopy in C28/I2 cells showed higher uptake and endosomal localization by increasing incubation time from 4 to 24 h. FcRn-mediated cellular recycling of the assembly was demonstrated in FcRn-expressing human microvascular endothelial cells. ADAMTS5 in vitro silencing efficiency reached 40%, which was comparable to free gapmer after 72 h incubation with human osteoarthritis patients’ chondrocytes. This work introduces a versatile biomolecular modular-based “Plug-and-Play” platform potentially applicable for albumin-mediated half-life extension for a range of different types of ODN therapeutics

    Cytokine profiles in the joint depend on pathology, but are different between synovial fluid, cartilage tissue and cultured chondrocytes

    Get PDF
    __Introduction:__ This study aimed to evaluate whether profiles of several soluble mediators in synovial fluid and cartilage tissue are pathology-dependent and how their productio

    The Added Value of the “Co” in Co-Culture Systems in Research on Osteoarthritis Pathology and Treatment Development

    Get PDF
    Osteoarthritis (OA) is a highly prevalent disease and a major health burden. Its development and progression are influenced by factors such as age, obesity or joint overuse. As a whole organ disease OA affects not only cartilage, bone and synovium but also ligaments, fatty or nervous tissue surrounding the joint. These joint tissues interact with each other and understanding this interaction is important in developing novel treatments. To incorporate and study these interactions in OA research, several co-culture models have evolved. They combine two or more cell types or tissues and investigate the influence of amongst others inflammatory or degenerative stimuli seen in OA. This review focuses on co-cultures and the differential processes occurring in a given tissue or cell as a consequence of being combined with another joint cell type or tissue, and/or the extent to which a co-culture mimics the in vivo processes. Most co-culture models depart from synovial lining and cartilage culture, but also fat pad and bone have been included. Not all of the models appear to reflect the postulated in vivo OA pathophysiology, although some of the discrepancies may indicate current assumptions on this process are not entirely valid. Systematic analysis of the mutual influence the separate compartments in a given model exert on each other and validation against in vivo or ex vivo observation is still largely lacking and would increase their added value as in vitro OA models

    Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model

    Get PDF
    Introduction: This study aimed to determine whether, as in osteoarthritis, increased levels of interleukin-6 (IL-6) are present in the synovial fluid of patients with symptomatic cartilage defects and whether this IL-6 affects cartilage regeneration as well as the cartilage in the degenerated knee.Methods: IL-6 concentrations were determined by ELISA in synovial fluid and in conditioned media of chondrocytes regenerating cartilage. Chondrocytes were obtained from donors with symptomatic cartilage defects, healthy and osteoarthritic donors. The effect of IL-6 on cartilage regeneration and on metabolism of the resident cartilage in the knee was studied by both inhibition of endogen

    Celecoxib alleviates nociceptor sensitization mediated by interleukin-1beta-primed annulus fibrosus cells.

    Get PDF
    PURPOSE This study aims to analyze the effect of pro-inflammatory cytokine-stimulated human annulus fibrosus cells (hAFCs) on the sensitization of dorsal root ganglion (DRG) cells. We further hypothesized that celecoxib (cxb) could inhibit hAFCs-induced DRG sensitization. METHODS hAFCs from spinal trauma patients were stimulated with TNF-α or IL-1β. Cxb was added on day 2. On day 4, the expression of pro-inflammatory and neurotrophic genes was evaluated using RT-qPCR. Levels of prostaglandin E2 (PGE-2), IL-8, and IL-6 were measured in the conditioned medium (CM) using ELISA. hAFCs CM was then applied to stimulate the DRG cell line (ND7/23) for 6 days. Then, calcium imaging (Fluo4) was performed to evaluate DRG cell sensitization. Both spontaneous and bradykinin-stimulated (0.5 μM) calcium responses were analyzed. The effects on primary bovine DRG cell culture were performed in parallel to the DRG cell line model. RESULTS IL-1ß stimulation significantly enhanced the release of PGE-2 in hAFCs CM, while this increase was completely suppressed by 10 µM cxb. hAFCs revealed elevated IL-6 and IL-8 release following TNF-α and IL-1β treatment, though cxb did not alter this. The effect of hAFCs CM on DRG cell sensitization was influenced by adding cxb to hAFCs; both the DRG cell line and primary bovine DRG nociceptors showed a lower sensitivity to bradykinin stimulation. CONCLUSION Cxb can inhibit PGE-2 production in hAFCs in an IL-1β-induced pro-inflammatory in vitro environment. The cxb applied to the hAFCs also reduces the sensitization of DRG nociceptors that are stimulated by the hAFCs CM

    Drug delivery in intervertebral disc degeneration and osteoarthritis : Selecting the optimal platform for the delivery of disease-modifying agents

    Get PDF
    Acknowledgement We would like to acknowledge Prof. Gerjo Van Osch and prof Molly Stevens for their careful and critical revision of the manuscript. We wish to thank all principal investigators of the TargetCaRe consortium for their enormous support during the years: Prof G. van Osch. Prof. Mauro Alini, Prof. Bruce Caterson, Dr. Alan Chan, Prof. Cosimo De Bari, Prof. Ron Heeren, Prof. Kennet Howard, Prof. Marcelle Machluf, Prof. Molly M. Stevens and Prof. Avner Yayon. This work was supported by European Union's Horizon 2020 Research And Innovation Programme under Marie Sklodowska Curie Grant agreement no. 642414.Peer reviewedproofPublisher PD
    corecore