6 research outputs found

    Aridity drives clinal patterns in leaf traits and responsiveness to precipitation in a broadly distributed Australian tree species

    Get PDF
    Aridity shapes species distributions and plant growth and function worldwide. Yet, plant traits often show complex relationships with aridity, challenging our understanding of aridity as a driver of evolutionary adaptation. We grew nine genotypes of Eucalyptus camaldulensis subsp. camaldulensis sourced from an aridity gradient together in the field for ~650 days under low and high precipitation treatments. Eucalyptus camaldulesis is considered a phreatophyte (deep-rooted species that utilizes groundwater), so we hypothesized that genotypes from more arid environments would show lower aboveground productivity, higher leaf gas-exchange rates, and greater tolerance/avoidance of dry surface soils (indicated by lower responsiveness) than genotypes from less arid environments. Aridity predicted genotype responses to precipitation, with more arid genotypes showing lower responsiveness to reduced precipitation and dry surface conditions than less arid genotypes. Under low precipitation, genotype net photosynthesis and stomatal conductance increased with home-climate aridity. Across treatments, genotype intrinsic water-use efficiency and osmotic potential declined with increasing aridity while photosynthetic capacity (Rubisco carboxylation and RuBP regeneration) increased with aridity. The observed clinal patterns indicate that E. camaldulensis genotypes from extremely arid environments possess a unique strategy defined by lower responsiveness to dry surface soils, low water-use efficiency, and high photosynthetic capacity. This strategy could be underpinned by deep rooting and could be adaptive under arid conditions where heat avoidance is critical and water demand is high

    Coordination between leaf, stem, and root hydraulics and gas exchange in three arid‐zone angiosperms during severe drought and recovery

    No full text
    The ability to resist hydraulic dysfunction in leaves, stems, and roots strongly influences whether plants survive and recover from drought. However, the coordination of hydraulic function among different organs within species and their links to gas exchange during drought and recovery remains understudied. Here, we examine the interaction between gas exchange and hydraulic function in the leaves, stems, and roots of three semiarid evergreen species exposed to a cycle of severe water stress (associated with substantial cavitation) and recovery. In all species, stomatal closure occurred at water potentials well before 50% loss of stem hydraulic conductance, while in two species, leaves and/or roots were more vulnerable than stems. Following soil rewetting, leaf‐level photosynthesis (Anet) returned to prestress levels within 2–4 weeks, whereas stomatal conductance and canopy transpiration were slower to recover. The recovery of Anet was decoupled from the recovery of leaf, stem, and root hydraulics, which remained impaired throughout the recovery period. Our results suggest that in addition to high embolism resistance, early stomatal closure and hydraulic vulnerability segmentation confers drought tolerance in these arid zone species. The lack of substantial embolism refilling within all major organs suggests that vulnerability of the vascular system to drought‐induced dysfunction is a defining trait for predicting postdrought recovery

    Species climate range influences hydraulic and stomatal traits in Eucalyptus species

    No full text
    Background and Aims Plant hydraulic traits influence the capacity of species to grow and survive in waterlimited environments, but their comparative study at a common site has been limited. The primary aim of this study was to determine whether selective pressures on species originating in drought-prone environments constrain hydraulic traits among related species grown under common conditions. _ Methods Leaf tissue water relations, xylem anatomy, stomatal behaviour and vulnerability to drought-induced embolism were measured on six Eucalyptus species growing in a common garden to determine whether these traits were related to current species climate range and to understand linkages between the traits. _ Key Results Hydraulically weighted xylem vessel diameter, leaf turgor loss point, the water potential at stomatal closure and vulnerability to drought-induced embolism were significantly (P < 0_05) correlated with climate parameters from the species range. There was a co-ordination between stem and leaf parameters with the water potential at turgor loss, 12 % loss of conductivity and the point of stomatal closure significantly correlated. _ Conclusions The correlation of hydraulic, stomatal and anatomical traits with climate variables from the species’ original ranges suggests that these traits are genetically constrained. The conservative nature of xylem traits in Eucalyptus trees has important implications for the limits of species responses to changing environmental conditions and thus for species survival and distribution into the future, and yields new information for physiological models

    Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species : the importance of altered Rubisco content

    No full text
    Understanding of the extent of acclimation of light-saturated net photosynthesis (An) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth System Model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species; six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (Tgrowth): temperate - 15, 20 and 25°C; tropical - 25, 30 and 35°C. CO2 response curves of An were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (Vcmax) and electron transport (Jmax) at each treatment's respective Tgrowth, and at a common measurement T (25°C). SDS-PAGE gels were used to determine abundance of the CO2-fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and Tgrowth, An at current atmospheric CO2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing Tgrowth. Similarly, area-based rates of Vcmax at a measurement T of 25°C (Vcmax25) linearly declined with increasing Tgrowth, linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained Vcmax and An for leaves developed at higher Tgrowth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for Tgrowth-mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of Tgrowth-mediated declines in Vcmax25 on An, complementing current photosynthetic thermal acclimation models that do not account for T-sensitivity of Vcmax25

    Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought : a comparison of model formulations

    No full text
    Drought strongly influences terrestrial C cycling via its effects on plant H2O and CO2 exchange. However, the treatment of photosynthetic physiology under drought by many ecosystem and earth system models remains poorly constrained by data. We measured the drought response of four tree species and evaluated alternative model formulations for drought effects on photosynthesis (A). We implemented a series of soil drying and rewetting events (i.e. multiple droughts) with four contrasting tree species in large pots (75 L) placed in the field under rainout shelters. We measured leaf-level gas exchange, predawn and midday leaf water potential (Ψpd and Ψmd), and leaf isotopic composition (δ13C) and calculated discrimination relative to the atmosphere (Δ). We then evaluated eight modeling frameworks that simulate the effects of drought in different ways. With moderate reductions in volumetric soil water content (θ), all species reduced stomatal conductance (gs), leading to an equivalent increase in water use efficiency across species inferred from both leaf gas exchange and Δ, despite a small reduction in photosynthetic capacity. With severe reductions in θ, all species strongly reduced gs along with a coincident reduction in photosynthetic capacity, illustrating the joint importance of stomatal and non-stomatal limitations of photosynthesis under strong drought conditions. Simple empirical models as well as complex mechanistic model formulations were equally successful at capturing the measured variation in A and gs, as long as the predictor variables were available from direct measurements (θ, Ψpd, and Ψmd). However, models based on leaf water potential face an additional challenge, as we found that Ψpd was substantially different from Ψsoil predicted by standard approaches based on θ. Modeling frameworks that combine gas exchange and hydraulic traits have the advantage of mechanistic realism, but sacrificed parsimony without an improvement in predictive power in this comparison. Model choice depends on the desired balance between simple empiricism and mechanistic realism. We suggest that empirical models implementing stomatal and non-stomatal limitations based on θ are highly predictive simple models. Mechanistic models that incorporate hydraulic traits have excellent potential, but several challenges currently limit their widespread implementation

    Global variability in leaf respiration in relation to climate, plant functional types and leaf traits

    No full text
    Summary: Leaf dark respiration (Rdark) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark. Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, Rdark at a standard T (25°C, Rdark25) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark25 at a given photosynthetic capacity (Vcmax25) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark25 values at any given Vcmax25 or [N] were higher in herbs than in woody plants. The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs)
    corecore