23,923 research outputs found

    A deep Chandra observation of the cluster environment of the z=1.786 radio galaxy 3C294

    Get PDF
    We report the results from a 200 ks Chandra observation of the z=1.786 radio galaxy 3C294 and its cluster environment, increasing by tenfold our earlier observation. The diffuse emission, extending about 100 kpc around the nucleus, has a roughly hourglass shape in the N-S direction with surprisingly sharp edges to the N and S. The spectrum of the diffuse emission is well fitted by either a thermal model of temperature 3.5 keV and abundance <0.9 solar (2-sigma), or a power-law with photon index 2.3. If the emission is due to hot gas then the sharp edges mean that it is probably not in hydrostatic equilibrium. Much of the emission is plausibly due to inverse Compton scattering of the Cosmic Microwave Background (CMB) by nonthermal electrons produced earlier by the radio source. The required relativistic electrons would be of much lower energy and older than those responsible for the present radio lobes. This could account for the lack of detailed spatial correspondence between the X-rays and the radio emission, the axis of which is at a position angle of about 45 deg. Hot gas would still be required to confine the relativistic plasma; the situation could parallel that of the radio bubbles seen as holes in nearby clusters, except that in 3C294 the bubbles are bright in X-rays owing to the extreme power in the source and the sixty fold increase in the energy density of the CMB. The X-ray spectrum of the radio nucleus is hard, showing a reflection spectrum and iron line. The source is therefore an obscured radio-loud quasar.Comment: In press (MNRAS), 10 pages, 12 figures (2 colour

    VLT near-infrared spectra of hard serendipitous Chandra sources

    Full text link
    We present near-infrared long-slit spectra of eight optically-dim X-ray sources obtained with ISAAC on the Very Large Telescope. Six of the sources have hard X-ray emission with a significant fraction of the counts emerging above 2 keV. All were discovered serendipitously in the fields of three nearby galaxy clusters observed with Chandra, and identified through near-infrared imaging. The X-ray fluxes lie close to the break in the source counts. Two of the sources show narrow emission lines, and a third has a broad line. One of the narrow line-emitting sources has a clear redshift identification at z=2.18, while the other has a tentative determination based on the highest redshift detection of He I 10830 at z=1.26. The remainder have featureless spectra to deep limiting equivalent widths of 20--60 angstroms and line flux approx= 5 x 10^{-17} erg/s/cm^2 in the K-band. High-quality J, H and Ks--band images of the sources were combined with archival optical detections or limits to estimate a photometric redshift for six. Two sources show complex double morphology. The hard sources have spectral count ratios consistent with heavily obscured AGN, while the host galaxy emits much of the optical and near-infrared flux. The most likely explanation for the featureless continua is that the line photons are being scattered or destroyed by optically-thick gas and associated dust with large covering fractions.Comment: Replaced in response to problems with the PDF version of Fig 4 at arxiv.org, but not at the mirror sites (lanl.gov, soton.ac.uk). No content change

    Extended X-ray emission around four 3C quasars at 0.55<z<0.75 observed with Chandra

    Get PDF
    We report on the detection of a soft spatially-extended component of X-ray emission around four intermediate-redshift 3C quasars observed with Chandra: 3C254, 3C263, 3C275.1 and 3C281. The bolometric luminosity of this emission ranges over 0.3-1.6 times 10^{44}erg/s, and extends to lengthscales of over 350 kpc at the redshift of the quasar. The X-rays are most likely thermal emission from the intracluster medium of a cluster of galaxies around each quasar, which provides the working surface for the powerful radio lobes. Some X-ray emission is also seen to be associated with the radio plasma.Comment: 8 pages, 4 panelled figures, MNRAS in pres

    Atomic Gas in Debris Discs

    Get PDF
    We have conducted a search for optical circumstellar absorption lines in the spectra of 16 debris disc host stars. None of the stars in our sample showed signs of emission line activity in either Hα_{\alpha}, Ca II or Na I, confirming their more evolved nature. Four stars were found to exhibit narrow absorption features near the cores of the photospheric Ca II and Na I D lines (when Na I D data were available). We analyse the characteristics of these spectral features to determine whether they are of circumstellar or interstellar origins. The strongest evidence for circumstellar gas is seen in the spectrum of HD110058, which is known to host a debris disc observed close to edge-on. This is consistent with a recent ALMA detection of molecular gas in this debris disc, which shows many similarities to the β\beta Pictoris system.Comment: Accepted 13/12/2016. Received 2/12/2016; Deposited on 22/11/2016. - 13 Pages, 9 Figures - MNRAS Advance Access published December 15, 201

    Universal trapping scaling on the unstable manifold for a collisionless electrostatic mode

    Full text link
    An amplitude equation for an unstable mode in a collisionless plasma is derived from the dynamics on the two-dimensional unstable manifold of the equilibrium. The mode amplitude ρ(t)\rho(t) decouples from the phase due to the spatial homogeneity of the equilibrium, and the resulting one-dimensional dynamics is analyzed using an expansion in ρ\rho. As the linear growth rate γ\gamma vanishes, the expansion coefficients diverge; a rescaling ρ(t)γ2r(γt)\rho(t)\equiv\gamma^2\,r(\gamma t) of the mode amplitude absorbs these singularities and reveals that the mode electric field exhibits trapping scaling E1γ2|E_1|\sim\gamma^2 as γ0\gamma\rightarrow0. The dynamics for r(τ)r(\tau) depends only on the phase eiξe^{i\xi} where dϵk/dz=ϵkeiξ/2d\epsilon_{{k}} /dz=|{\epsilon_{{k}}}|e^{-i\xi/2} is the derivative of the dielectric as γ0\gamma\rightarrow0.Comment: 11 pages (Latex/RevTex), 2 figures available in hard copy from the Author ([email protected]); paper accepted by Physical Review Letter
    corecore