2,161 research outputs found
Chemical characteristics of air from different source regions during the second Pacific Exploratory Mission in the Tropics (PEM-Tropics B)
Ten-day backward trajectories are used to determine the origins of air parcels arriving at locations of airborne DC-8 chemical measurements during NASA's second Pacific Exploratory Mission in the Tropics B that was conducted during February-April 1999. Chemical data at sites where the trajectories had a common geographical origin and transport history are grouped together, and statistical measures of chemical characteristics are computed. Temporal changes in potential temperature are used to determine whether trajectories experienced a significant convective influence during the 10-day period. Trajectories describing the aged marine Southern Hemispheric category remain over the South Pacific Ocean during the 10-day period, and their corresponding chemical signature indicates very clean air. The category aged marine air in the Northern Hemisphere is found to be somewhat dirtier. Subdividing its trajectories based on the direction from which the air had traveled is found to be important in explaining the various chemical signatures. Similarly, long-range northern hemispheric trajectories passing over Asia are subdivided depending on whether they had followed a mostly zonal path, had originated near the Indian Ocean, or had originated near Central or South America and subsequently experienced a stratospheric influence. Results show that the chemical signatures of these subcategories are different from each other. The chemical signature of the southern hemispheric long-range transport category apparently exhibits the effects of pollution from Australia, southern Africa, and South America. Parcels originating over Central and northern South America are found to contain the strongest pollution signature of all categories, due to biomass burning and other sources. The convective category exhibits enhanced values of nitrogen species, probably due to emissions from lightning associated with the convection. Values of various species, including peroxides and acids, confirm that parcels were influenced by the removal of soluble gas and particle species due to precipitation. Finally, current results are compared with those from the first PEM-Tropics mission that was conducted in the same region during the southern hemispheric dry season (August-October 1996) when extensive biomass burning occurred. Results show that air samples during PEM-Tropics B are considerably cleaner than those of its dry season counterpart. Copyright 2001 by the American Geophysical Union
Recommended from our members
Photochemical production and evolution of selected C2-C5 alkyl nitrates in tropospheric air influenced by Asian outflow
The photochemical production and evolution of six C2-C5 alkyl nitrates (ethyl-, 1-propyl-, 2-propyl-, 2-butyl-, 2-pentyl-, and 3-pentyl nitrate) was investigated using selected data from 5500 whole air samples collected downwind of Asia during the airborne Transport and Chemical Evolution over the Pacific (TRACE-P) field campaign (February-April 2001). Air mass age was important for selecting appropriate field data to compare with laboratory predictions of C5 alkyl nitrate production rates. In young, highly polluted air masses, the ratio between the production rates of 3-pentyl nitrate and 2-pentyl nitrate from n-pentane was 0.60-0.65. These measured ratios show excellent agreement with results from a field study in Germany (0.63 ± 0.06), and they agree better with predicted ratios from older laboratory kinetic studies (0.63-0.66) than with newer laboratory results (0.73 ± 0.08). TRACE-P samples that did not show influence from marine alkyl nitrate sources were used to investigate photochemical alkyl nitrate evolution. Relative to 2-butyl nitrate/n-butane, the measured ratios of ethyl nitrate/ethane and 2-propyl nitrate/propane showed notable deviations from modeled values based on laboratory kinetic data, suggesting additional Asian sources of their alkyl peroxy radical precursors. By contrast, the measured ratios of 1-propyl-, 2-pentyl-, and 3-pentyl nitrate to their respective parent hydrocarbons were fairly close to modeled values. The 1-propyl nitrate findings contrast with field studies in North America, and suggest that air downwind of Asia was not significantly impacted by additional 1-propyl nitrate precursors. The sensitivity of modeled photochemical processing times to hydroxyl radical concentration, altitude, city ventilation times, and dilution is discussed
Family influences on children's physical activity and fruit and vegetable consumption
Background : There is evidence of a clustering of healthy dietary patterns and physical activity among young people and also of unhealthy behaviours. The identification of influences on children\u27s health behaviors, particularly clustered health behaviors, at the time at which they develop is imperative for the design of interventions. This study examines associations between parental modelling and support and children\u27s physical activity (PA) and consumption of fruit and vegetables (FV), and combinations of these behaviours.Methods : In 2002/3 parents of 775 Australian children aged 10–12 years reported how frequently their child ate a variety of fruits and vegetables in the last week. Children wore accelerometers for eight days during waking hours. Parental modelling and parental support (financial and transport) were self-reported. Binary logistic and multinomial logistic regression analyses examined the likelihood of achieving ≥ 2 hours of PA per day (high PA) and of consuming ≥ 5 portions of FV per day (high FV) and combinations of these behaviors (e.g. high PA/low FV), according to parental modelling and support.Results : Items of parental modelling and support were differentially associated with child behaviours. For example, girls whose parents reported high PA modelling had higher odds of consuming ≥ 5 portions of FV/day (OR = 1.95, 95% CI = 1.32–2.87, p < 0.001). Boys whose parents reported high financial support for snacks/fast foods had higher odds of having \u27high PA/low FV\u27 (OR = 2.0, 95% CI = 1.1–3.7).Conclusion : Parental modelling of and support for physical activity and fruit and vegetable consumption were differentially associated with these behaviours in children across behavioural domains and with combinations of these behaviours. Promoting parents\u27 own healthy eating and physical activity behaviours as well encouraging parental modelling and support of these behaviours in their children may be important strategies to test in future research.<br /
Recommended from our members
Implications of large scale shifts in tropospheric NOx levels in the remote tropical Pacific
A major observation recorded during NASA's western Pacific Exploratory Mission (PEM-West B) was the large shift in tropical NO levels as a function of geographical location. High-altitude NO levels exceeding 100 pptv were observed during portions of tropical flights 5-8, while values almost never exceeded 20 pptv during tropical flights 9 and 10. The geographical regions encompassing these two flight groupings are here labeled "high" and "low" NOx regimes. A comparison of these two regimes, based on back trajectories and chemical tracers, suggests that air parcels in both were strongly influenced by deep convection. The low NOx regime appears to have been predominantly impacted by marine convection, whereas the high NOx regime shows evidence of having been more influenced by deep convection over a continental land mass. DMSP satellite observations point strongly toward lightning as the major source of NOx in the latter regime. Photochemical ozone formation in the high NOx regime exceeded that for low NOx by factors of 2 to 6, whereas O3 destruction in the low NOx regime exceeded that for high NOx by factors of up to 3. Taking the tropopause height to be 17 km, estimates of the net photochemical effect on the O3 column revealed that the high NOx regime led to a small net production. By contrast, the low NOx regime was shown to destroy O3 at the rate of 3.4% per day. One proposed mechanism for off-setting this projected large deficit would involve the transport of O3 rich midlatitude air into the tropics. Alternatively, it is suggested that O3 within the tropics may be overall near self-sustaining with respect to photochemical activity. This scenario would require that some tropical regions, unsampled at the time of PEM-B, display significant net column O3 production, leading to an overall balanced budget for the "greater" tropical Pacific basin. Details concerning the chemical nature of such regimes are discussed
Recommended from our members
Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P
Airborne measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific troposphere (0.1 - 12 km) in winter/spring of 2001 (24 February to 10 April). Specifically, these measurements included acetone (CH3COCHA3), methylethyl ketone (CH3COC2H5, MEK), methanol (CH3OH), ethanol (C2H5OH), acetaldehyde (CH3CHO), propionaldehyde C2H 5CHO), peroxyacylnitrates (PANs) (CnH 2n+1COO2NO2), and organic nitrates (CnH2n+1ONO2). Complementary measurements of formaldehyde (HCHO), methyl hydroperoxide (CH 3OOH), and selected tracers were also available. OVOC were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Background mixing ratios were typically highest in the lower troposphere and declined toward the upper troposphere and the lowermost stratosphere. Their total abundance (ΣOVOC) was nearly twice that of nonmethane hydrocarbons (Σ C2-C8 NMHC. Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data with western Pacific observations collected some 7 years earlier (February-March 1994) did not reveal significant differences. Mixing ratios of OVOC were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected OVOC with respect to CH 3Cl and CO in 12 plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. A three-dimensional global model that uses state of the art chemistry and source information is used to compare measured and simulated mixing ratios of selected OVOC. While there is reasonable agreement in many cases, measured aldehyde concentrations are significantly larger than predicted. At their observed levels, acetaldehyde mixing ratios are shown to be an important source of HCHO (and HOx) and PAN in the troposphere. On the basis of presently known chemistry, measured mixing ratios of aldehydes and PANs are mutually incompatible. We provide rough estimates of the global sources of several OVOC and conclude that collectively these are extremely large (150-500 Tg C yr-1) but remain poorly quantified. Copyright 2004 by the American Geophysical Union
Recommended from our members
OH and HO2 chemistry in the North Atlantic free troposphere
Interactions between atmospheric hydrogen oxides and aircraft nitrogen oxides determine the impact of aircraft exhaust on atmospheric chemistry. To study these interactions, the Subsonic Assessment: Ozone and Nitrogen Oxide Experiment (SONEX) assembled the most complete measurement complement to date for studying HO(x) (OH and HO2) chemistry in the free troposphere. Observed and modeled HO(x) agree on average to within experimental uncertainties (±40%). However, significant discrepancies occur as a function of NO and at solar zenith angles >70°. Some discrepancies appear to be removed by model adjustments to HO(x)-NO(x) chemistry, particularly by reducing HO2NO2 (PNA) and by including heterogeneous reactions on aerosols and cirrus clouds
Seasonal differences in the photochemistry of the South Pacific: A comparison of observations and model results from PEM-Tropics A and B
A time-dependent photochemical box model is used to examine the photochemistry of the equatorial and southern subtropical Pacific troposphere with aircraft data obtained during two distinct seasons: the Pacific Exploratory Mission-Tropics A (PEM-Tropics A) field campaign in September and October of 1996 and the Pacific Exploratory Mission-Tropics B (PEM-Tropics B) campaign in March and April of 1999. Model-predicted values were compared to observations for selected species (e.g., NO2, OH, HO2) with generally good agreement. Predicted values of HO2 were larger than those observed in the upper troposphere, in contrast to previous studies which show a general underprediction of HO2 at upper altitudes. Some characteristics of the budgets of HOx, NOx, and peroxides are discussed. The integrated net tendency for O3 is negative over the remote Pacific during both seasons, with gross formation equal to no more than half of the gross destruction. This suggests that a continual supply of O3 into the Pacific region throughout the year must exist in order to maintain O3 levels. Integrated net tendencies for equatorial O3 showed a seasonality, with a net loss of 1.06×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 50% to 1.60×1011 molecules cm-2 s-1 during PEM-Tropics A (September). The seasonality over the southern subtropical Pacific was somewhat lower, with losses of 1.21×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 25% to 1.51×1011 molecules cm-2 s-1 during PEM-Tropics A (September). While the larger net losses during PEM-Tropics A were primarily driven by higher concentrations of O3, the ability of the subtropical atmosphere to destroy O3 was ∼30% less effective during the PEM-Tropics A (September) campaign due to a drier atmosphere and higher overhead O3 column amounts. Copyright 2001 by the American Geophysical Union
- …