2,161 research outputs found

    Chemical characteristics of air from different source regions during the second Pacific Exploratory Mission in the Tropics (PEM-Tropics B)

    Get PDF
    Ten-day backward trajectories are used to determine the origins of air parcels arriving at locations of airborne DC-8 chemical measurements during NASA's second Pacific Exploratory Mission in the Tropics B that was conducted during February-April 1999. Chemical data at sites where the trajectories had a common geographical origin and transport history are grouped together, and statistical measures of chemical characteristics are computed. Temporal changes in potential temperature are used to determine whether trajectories experienced a significant convective influence during the 10-day period. Trajectories describing the aged marine Southern Hemispheric category remain over the South Pacific Ocean during the 10-day period, and their corresponding chemical signature indicates very clean air. The category aged marine air in the Northern Hemisphere is found to be somewhat dirtier. Subdividing its trajectories based on the direction from which the air had traveled is found to be important in explaining the various chemical signatures. Similarly, long-range northern hemispheric trajectories passing over Asia are subdivided depending on whether they had followed a mostly zonal path, had originated near the Indian Ocean, or had originated near Central or South America and subsequently experienced a stratospheric influence. Results show that the chemical signatures of these subcategories are different from each other. The chemical signature of the southern hemispheric long-range transport category apparently exhibits the effects of pollution from Australia, southern Africa, and South America. Parcels originating over Central and northern South America are found to contain the strongest pollution signature of all categories, due to biomass burning and other sources. The convective category exhibits enhanced values of nitrogen species, probably due to emissions from lightning associated with the convection. Values of various species, including peroxides and acids, confirm that parcels were influenced by the removal of soluble gas and particle species due to precipitation. Finally, current results are compared with those from the first PEM-Tropics mission that was conducted in the same region during the southern hemispheric dry season (August-October 1996) when extensive biomass burning occurred. Results show that air samples during PEM-Tropics B are considerably cleaner than those of its dry season counterpart. Copyright 2001 by the American Geophysical Union

    Family influences on children's physical activity and fruit and vegetable consumption

    Get PDF
    Background : There is evidence of a clustering of healthy dietary patterns and physical activity among young people and also of unhealthy behaviours. The identification of influences on children\u27s health behaviors, particularly clustered health behaviors, at the time at which they develop is imperative for the design of interventions. This study examines associations between parental modelling and support and children\u27s physical activity (PA) and consumption of fruit and vegetables (FV), and combinations of these behaviours.Methods : In 2002/3 parents of 775 Australian children aged 10&ndash;12 years reported how frequently their child ate a variety of fruits and vegetables in the last week. Children wore accelerometers for eight days during waking hours. Parental modelling and parental support (financial and transport) were self-reported. Binary logistic and multinomial logistic regression analyses examined the likelihood of achieving &ge; 2 hours of PA per day (high PA) and of consuming &ge; 5 portions of FV per day (high FV) and combinations of these behaviors (e.g. high PA/low FV), according to parental modelling and support.Results : Items of parental modelling and support were differentially associated with child behaviours. For example, girls whose parents reported high PA modelling had higher odds of consuming &ge; 5 portions of FV/day (OR = 1.95, 95% CI = 1.32&ndash;2.87, p &lt; 0.001). Boys whose parents reported high financial support for snacks/fast foods had higher odds of having \u27high PA/low FV\u27 (OR = 2.0, 95% CI = 1.1&ndash;3.7).Conclusion : Parental modelling of and support for physical activity and fruit and vegetable consumption were differentially associated with these behaviours in children across behavioural domains and with combinations of these behaviours. Promoting parents\u27 own healthy eating and physical activity behaviours as well encouraging parental modelling and support of these behaviours in their children may be important strategies to test in future research.<br /

    Seasonal differences in the photochemistry of the South Pacific: A comparison of observations and model results from PEM-Tropics A and B

    Get PDF
    A time-dependent photochemical box model is used to examine the photochemistry of the equatorial and southern subtropical Pacific troposphere with aircraft data obtained during two distinct seasons: the Pacific Exploratory Mission-Tropics A (PEM-Tropics A) field campaign in September and October of 1996 and the Pacific Exploratory Mission-Tropics B (PEM-Tropics B) campaign in March and April of 1999. Model-predicted values were compared to observations for selected species (e.g., NO2, OH, HO2) with generally good agreement. Predicted values of HO2 were larger than those observed in the upper troposphere, in contrast to previous studies which show a general underprediction of HO2 at upper altitudes. Some characteristics of the budgets of HOx, NOx, and peroxides are discussed. The integrated net tendency for O3 is negative over the remote Pacific during both seasons, with gross formation equal to no more than half of the gross destruction. This suggests that a continual supply of O3 into the Pacific region throughout the year must exist in order to maintain O3 levels. Integrated net tendencies for equatorial O3 showed a seasonality, with a net loss of 1.06×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 50% to 1.60×1011 molecules cm-2 s-1 during PEM-Tropics A (September). The seasonality over the southern subtropical Pacific was somewhat lower, with losses of 1.21×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 25% to 1.51×1011 molecules cm-2 s-1 during PEM-Tropics A (September). While the larger net losses during PEM-Tropics A were primarily driven by higher concentrations of O3, the ability of the subtropical atmosphere to destroy O3 was ∼30% less effective during the PEM-Tropics A (September) campaign due to a drier atmosphere and higher overhead O3 column amounts. Copyright 2001 by the American Geophysical Union
    • …
    corecore