644 research outputs found

    Developing an Explicit Instruction Special Education Teacher Observation Rubric

    Get PDF
    In this study, we developed an Explicit Instruction special education teacher observation rubric that details the elements of explicit instruction, and tested its psychometric properties using many-faceted Rasch measurement (MFRM). Video observations of classroom instruction from 30 special education teachers across three states were collected. External raters (n = 15) were trained to observe and evaluate instruction using the rubric, and assigned scores of ‘implemented’, ‘partially implemented’ or ‘not implemented’ for each of the items. Analyses showed that the item, teacher, lesson and rater facets achieved high psychometric quality for the instrument. Implications for research and practice are discussed

    Influence of Proportional Number Relationships on Item Accessibility and Students’ Strategies

    Get PDF
    Extensive evidence points to the need for mathematics instruction to tap into students’ informal understandings in order to conceptually develop formal mathematical ideas (Ahl, Moore, & Dixon, 1992; Freudenthal, 1973, 1991; Treffers, 1987). Contextual problems are a common means of helping students access their informal mathematical ideas (Lamon, 1993; Moore & Carlson, 2012). However, to successfully use context in this manner, we must ensure these problems are accessible to students and have the potential to promote connections to deeper or more formal mathematics (Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013; Stein, Smith, Henningsen, & Silver, 2000). There is thus a need for research to identify what characteristics make contextual tasks accessible to students as a point of entry and useful for educators in analyzing and pressing students’ thinking

    Treatment decisions and the use of MEK inhibitors for children with neurofibromatosis type 1-related plexiform neurofibromas

    Get PDF
    Neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome, occurs when NF1 gene variants result in loss of neurofibromin, a negative regulator of RAS activity. Plexiform neurofibromas (PN) are peripheral nerve sheath tumors that develop in patients with NF1 and are associated with substantial morbidity and for which, until recently, the only treatment was surgical resection. However, surgery carries several risks and a proportion of PN are considered inoperable. Understanding the genetic underpinnings of PN led to the investigation of targeted therapies as medical treatment options, and the MEK1/2 inhibitor selumetinib has shown promising efficacy in pediatric patients with NF1 and symptomatic, inoperable PN. In a phase I/II trial, most children (approximately 70%) achieved reduction in tumor volume accompanied by improvements in patient-reported outcomes (decreased tumor-related pain and improvements in quality of life, strength, and range of motion). Selumetinib is currently the only licensed medical therapy indicated for use in pediatric patients with symptomatic, inoperable NF1-PN, with approval based on the results of this pivotal clinical study. Several other MEK inhibitors (binimetinib, mirdametinib, trametinib) and the tyrosine kinase inhibitor cabozantinib are also being investigated as medical therapies for NF1-PN. Careful consideration of multiple aspects of both disease and treatments is vital to reduce morbidity and improve outcomes in patients with this complex and heterogeneous disease, and clinicians should be fully aware of the risks and benefits of available treatments. There is no single treatment pathway for patients with NF1-PN; surgery, watchful waiting, and/or medical treatment are options. Treatment should be individualized based on recommendations from a multidisciplinary team, considering the size and location of PN, effects on adjacent tissues, and patient and family preferences. This review outlines the treatment strategies currently available for patients with NF1-PN and the evidence supporting the use of MEK inhibitors, and discusses key considerations in clinical decision-making

    Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis

    Get PDF
    All eukaryotic genomes are packaged as chromatin, with DNA interlaced with both regularly patterned nucleosomes and sub-nucleosomal-sized protein structures such as mobile and labile transcription factors (TF) and initiation complexes, together forming a dynamic chromatin landscape. Whilst details of nucleosome position in Arabidopsis have been previously analysed, there is less understanding of their relationship to more dynamic sub-nucleosomal particles (subNSPs) defined as protected regions shorter than the ~150bp typical of nucleosomes. The genome-wide profile of these subNSPs has not been previously analysed in plants and this study investigates the relationship of dynamic bound particles with transcriptional control. Here we combine differential micrococcal nuclease (MNase) digestion and a modified paired-end sequencing protocol to reveal the chromatin structure landscape of Arabidopsis cells across a wide particle size range. Linking this data to RNAseq expression analysis provides detailed insight into the relationship of identified DNA-bound particles with transcriptional activity. The use of differential digestion reveals sensitive positions, including a labile -1 nucleosome positioned upstream of the transcription start site (TSS) of active genes. We investigated the response of the chromatin landscape to changes in environmental conditions using light and dark growth, given the large transcriptional changes resulting from this simple alteration. The resulting shifts in the suites of expressed and repressed genes show little correspondence to changes in nucleosome positioning, but led to significant alterations in the profile of subNSPs upstream of TSS both globally and locally. We examined previously mapped positions for the TFs PIF3, PIF4 and CCA1, which regulate light responses, and found that changes in subNSPs co-localized with these binding sites. This small particle structure is detected only under low levels of MNase digestion and is lost on more complete digestion of chromatin to nucleosomes. We conclude that wide-spectrum analysis of the Arabidopsis genome by differential MNase digestion allows detection of sensitive features hereto obscured, and the comparisons between genome-wide subNSP profiles reveals dynamic changes in their distribution, particularly at distinct genomic locations (i.e. 5’UTRs). The method here employed allows insight into the complex influence of genetic and extrinsic factors in modifying the sub-nucleosomal landscape in association with transcriptional changes

    Demonstrating the Use of Optical Fibres in Biomedical Sensing:A Collaborative Approach for Engagement and Education

    Get PDF
    This paper demonstrates how research at the intersection of physics, engineering, biology and medicine can be presented in an interactive and educational way to a non-scientific audience. Interdisciplinary research with a focus on prevalent diseases provides a relatable context that can be used to engage with the public. Respiratory diseases are significant contributors to avoidable morbidity and mortality and have a growing social and economic impact. With the aim of improving lung disease understanding, new techniques in fibre-based optical endomicroscopy have been recently developed. Here, we present a novel engagement activity that resembles a bench-to-bedside pathway. The activity comprises an inexpensive educational tool ($70) adapted from a clinical optical endomicroscopy system and tutorials that cover state-of-the-art research. The activity was co-created by high school science teachers and researchers in a collaborative way that can be implemented into any engagement development process

    Retroviral DNA Integration: Viral and Cellular Determinants of Target-Site Selection

    Get PDF
    Retroviruses differ in their preferences for sites for viral DNA integration in the chromosomes of infected cells. Human immunodeficiency virus (HIV) integrates preferentially within active transcription units, whereas murine leukemia virus (MLV) integrates preferentially near transcription start sites and CpG islands. We investigated the viral determinants of integration-site selection using HIV chimeras with MLV genes substituted for their HIV counterparts. We found that transferring the MLV integrase (IN) coding region into HIV (to make HIVmIN) caused the hybrid to integrate with a specificity close to that of MLV. Addition of MLV gag (to make HIVmGagmIN) further increased the similarity of target-site selection to that of MLV. A chimeric virus with MLV Gag only (HIVmGag) displayed targeting preferences different from that of both HIV and MLV, further implicating Gag proteins in targeting as well as IN. We also report a genome-wide analysis indicating that MLV, but not HIV, favors integration near DNase I–hypersensitive sites (i.e., +/− 1 kb), and that HIVmIN and HIVmGagmIN also favored integration near these features. These findings reveal that IN is the principal viral determinant of integration specificity; they also reveal a new role for Gag-derived proteins, and strengthen models for integration targeting based on tethering of viral IN proteins to host proteins

    Vegetarian diets are associated with healthy mood states: a cross-sectional study in Seventh Day Adventist adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The physical health status of vegetarians has been extensively reported, but there is limited research regarding the mental health status of vegetarians, particularly with regard to mood. Vegetarian diets exclude fish, the major dietary source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), critical regulators of brain cell structure and function. Omnivorous diets low in EPA and DHA are linked to impaired mood states in observational and experimental studies.</p> <p>Methods</p> <p>We examined associations between mood state and polyunsaturated fatty acid intake as a result of adherence to a vegetarian or omnivorous diet in a cross-sectional study of 138 healthy Seventh Day Adventist men and women residing in the Southwest. Participants completed a quantitative food frequency questionnaire, Depression Anxiety Stress Scale (DASS), and Profile of Mood States (POMS) questionnaires.</p> <p>Results</p> <p>Vegetarians (VEG:n = 60) reported significantly less negative emotion than omnivores (OMN:n = 78) as measured by both mean total DASS and POMS scores (8.32 ± 0.88 vs 17.51 ± 1.88, <it>p </it>= .000 and 0.10 ± 1.99 vs 15.33 ± 3.10, <it>p </it>= .007, respectively). VEG reported significantly lower mean intakes of EPA (<it>p </it>< .001), DHA (<it>p </it>< .001), as well as the omega-6 fatty acid, arachidonic acid (AA; <it>p </it>< .001), and reported higher mean intakes of shorter-chain α-linolenic acid (<it>p </it>< .001) and linoleic acid (<it>p </it>< .001) than OMN. Mean total DASS and POMS scores were positively related to mean intakes of EPA (<it>p </it>< 0.05), DHA (<it>p </it>< 0.05), and AA (<it>p </it>< 0.05), and inversely related to intakes of ALA (<it>p </it>< 0.05), and LA (<it>p </it>< 0.05), indicating that participants with low intakes of EPA, DHA, and AA and high intakes of ALA and LA had better mood.</p> <p>Conclusions</p> <p>The vegetarian diet profile does not appear to adversely affect mood despite low intake of long-chain omega-3 fatty acids.</p
    corecore