52 research outputs found

    Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene

    Get PDF
    BACKGROUND: Matrix metalloprotease 9 (MMP-9) is associated with inflammation and lung remodeling in chronic obstructive pulmonary disease (COPD). We hypothesized that elevated circulating MMP-9 represents a potentially novel biomarker that identifies a subset of individuals with COPD with an inflammatory phenotype who are at increased risk for acute exacerbation (AECOPD). METHODS: We analyzed Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) and Genetic Epidemiology of COPD (COPDGene) cohorts for which baseline and prospective data were available. Elevated MMP-9 was defined based on >95th percentile plasma values from control (non-COPD) sample in SPIROMICS. COPD subjects were classified as having elevated or nonelevated MMP-9. Logistic, Poisson, and Kaplan-Meier analyses were used to identify associations with prospective AECOPD in both cohorts. RESULTS: Elevated MMP-9 was present in 95/1,053 (9%) of SPIROMICS and 41/140 (29%) of COPDGene participants with COPD. COPD subjects with elevated MMP-9 had a 13%-16% increased absolute risk for AECOPD and a higher median (interquartile range; IQR) annual AECOPD rate (0.33 [0-0.74] versus 0 [0-0.80] events/year and 0.9 [0.5-2] versus 0.5 [0-1.4] events/year for SPIROMICS and COPDGene, respectively). In adjusted models within each cohort, elevated MMP-9 was associated with increased odds (odds ratio [OR], 1.71; 95%CI, 1.00-2.90; and OR, 3.03; 95%CI, 1.02-9.01), frequency (incidence rate ratio [IRR], 1.45; 95%CI, 1.23-1.7; and IRR, 1.24; 95%CI, 1.03-1.49), and shorter time-to-first AECOPD (21.7 versus 31.7 months and 14 versus 21 months) in SPIROMICS and COPDGene, respectively. CONCLUSIONS: Elevated MMP-9 was independently associated with AECOPD risk in 2 well-characterized COPD cohorts. These findings provide evidence for MMP-9 as a prognostic biomarker and potential therapeutic target in COPD. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01969344 (SPIROMICS) and NCT00608764 (COPDGene). FUNDING: This work was funded by K08 HL123940 to JMW; R01HL124233 to PJC; Merit Review I01 CX000911 to JLC; R01 (R01HL102371, R01HL126596) and VA Merit (I01BX001756) to AG. SPIROMICS (Subpopulations and Intermediate Outcomes in COPD Study) is funded by contracts from the NHLBI (HHSN268200900013C, HHSN268200900014C,HHSN268200900015C HHSN268200900016C, HHSN268200900017C, HHSN268200900018C, HHSN268200900019C, and HHSN268200900020C) and a grant from the NIH/NHLBI (U01 HL137880), and supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune; Bayer; Bellerophon Therapeutics; Boehringer-Ingelheim Pharmaceuticals Inc.; Chiesi Farmaceutici; Forest Research Institute Inc.; GlaxoSmithKline; Grifols Therapeutics Inc.; Ikaria Inc.; Novartis Pharmaceuticals Corporation; Nycomed GmbH; ProterixBio; Regeneron Pharmaceuticals Inc.; Sanofi; Sunovion; Takeda Pharmaceutical Company; and Theravance Biopharma and Mylan. COPDGene is funded by the NHLBI (R01 HL089897 and R01 HL089856) and by the COPD Foundation through contributions made to an Industry Advisory Board composed of AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Pfizer, Siemens, and Sunovion

    Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury

    Get PDF
    SummaryObjectiveExcess reactive oxygen species and oxidative damage have been associated with the pathogenesis of osteoarthritis (OA). Extracellular superoxide dismutase (EC-SOD or SOD3) scavenges superoxide is the major catalytic antioxidant in joint fluid and is decreased in OA cartilage. We studied human joint fluid samples to test whether there is an association between OA and EC-SOD or other low molecular antioxidants in the joint fluid.MethodsJoint fluid samples were obtained from 28 subjects with severe OA undergoing arthrocentesis or knee joint replacement and compared to joint fluid from 12 subjects undergoing knee arthroscopy for chronic knee pain, meniscal tears or anterior cruciate ligament reconstruction. EC-SOD protein was assayed by enzyme-linked immunosorbent assay (ELISA). Ascorbate and urate were measured with high performance liquid chromatography (HPLC) and total nitrates by the Greiss reaction. Glutathione (GSH) and oxidized glutathione were measured using a colorimetric method. Interleukin-6 (IL-6) and transforming growth factor-beta (TGF-beta) were both measured with ELISA.ResultsHuman joint fluid contains significant amounts of the extracellular, catalytic antioxidant EC-SOD. Joint fluid from OA subjects is characterized by significantly decreased EC-SOD levels and significant decreases in GSH, and ascorbate compared to the reference group of knee joints with pain or subacute injury but macroscopically intact cartilage. GSH and ascorbate show only an age effect with no effect from disease state on regression modeling. Urate is present in joint fluid but does not show a significant difference between groups. IL-6 and TGF-beta both show non-significant trends to increases in the arthritic subjects. There was no correlation of EC-SOD levels with IL-6 as a marker of inflammation in either the comparison group or the OA group.ConclusionsEC-SOD, the major scavenger of reactive oxygen species (ROS) in extracellular spaces and fluids, is decreased in late stage OA joint fluid compared to fluid from injured/painful joints with intact cartilage. Injured joints may be able to increase or maintain secretion of EC-SOD but it appears that late stage OA joints fail to do so in spite of increased oxidative stress seen in the disease. Associated age related declines in GSH and ascorbate might also contribute to the development of severe OA. The net effect of these changes in joint fluid antioxidants is likely to accelerate the damaging oxidant effects on extracellular matrix stability in cartilage tissue

    Stress fracture of the ulna in a male competitive polo player

    Get PDF
    BACKGROUND: Development of adult respiratory disease is influenced by events in childhood. The impact of childhood pneumonia on chronic obstructive pulmonary disease (COPD) is not well defined. We hypothesize that childhood pneumonia is a risk factor for reduced lung function and COPD in adult smokers. METHODS: COPD cases and control smokers between 45-80 years old from the United States COPDGene Study were included. Childhood pneumonia was defined by self-report of pneumonia at <16 years. Subjects with lung disease other than COPD or asthma were excluded. Smokers with and without childhood pneumonia were compared on measures of respiratory disease, lung function, and quantitative analysis of chest CT scans. RESULTS: Of 10,192 adult smokers, 854 (8.4%) reported pneumonia in childhood. Childhood pneumonia was associated with COPD (OR 1.40; 95% CI 1.17-1.66), chronic bronchitis, increased COPD exacerbations, and lower lung function: post-bronchodilator FEV1 (69.1 vs. 77.1% predicted), FVC (82.7 vs. 87.4% predicted), FEV1/FVC ratio (0.63 vs. 0.67; p < 0.001 for all comparisons). Childhood pneumonia was associated with increased airway wall thickness on CT, without significant difference in emphysema. Having both pneumonia and asthma in childhood further increased the risk of developing COPD (OR 1.85; 95% CI 1.10-3.18). CONCLUSIONS: Children with pneumonia are at increased risk for future smoking-related lung disease including COPD and decreased lung function. This association is supported by airway changes on chest CT scans. Childhood pneumonia may be an important factor in the early origins of COPD, and the combination of pneumonia and asthma in childhood may pose the greatest risk. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov, NCT00608764 (Active since January 28, 2008)

    Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society

    No full text
    Item does not contain fulltextThis report is to complement the original Fleischner Society recommendations for incidentally detected solid nodules by proposing a set of recommendations specifically aimed at subsolid nodules. The development of a standardized approach to the interpretation and management of subsolid nodules remains critically important given that peripheral adenocarcinomas represent the most common type of lung cancer, with evidence of increasing frequency. Following an initial consideration of appropriate terminology to describe subsolid nodules and a brief review of the new classification system for peripheral lung adenocarcinomas sponsored by the International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS), and European Respiratory Society (ERS), six specific recommendations were made, three with regard to solitary subsolid nodules and three with regard to multiple subsolid nodules. Each recommendation is followed first by the rationales underlying the recommendation and then by specific pertinent remarks. Finally, issues for which future research is needed are discussed. The recommendations are the result of careful review of the literature now available regarding subsolid nodules. Given the complexity of these lesions, the current recommendations are more varied than the original Fleischner Society guidelines for solid nodules. It cannot be overemphasized that these guidelines must be interpreted in light of an individual's clinical history. Given the frequency with which subsolid nodules are encountered in daily clinical practice, and notwithstanding continuing controversy on many of these issues, it is anticipated that further refinements and modifications to these recommendations will be forthcoming as information continues to emerge from ongoing research
    • …
    corecore