3,663 research outputs found

    A Stellar Rotation Census of B Stars: from ZAMS to TAMS

    Full text link
    Two recent observing campaigns provide us with moderate dispersion spectra of more than 230 cluster and 370 field B stars. Combining them and the spectra of the B stars from our previous investigations (\sim430 cluster and \sim100 field B stars) yields a large, homogeneous sample for studying the rotational properties of B stars. We derive the projected rotational velocity VsiniV\sin i, effective temperature, gravity, mass, and critical rotation speed VcritV_{\rm crit} for each star. We find that the average VsiniV\sin i is significantly lower among field stars because they are systematically more evolved and spun down than their cluster counterparts. The rotational distribution functions of Veq/VcritV_{\rm eq}/V_{\rm crit} for the least evolved B stars show that lower mass B stars are born with a larger proportion of rapid rotators than higher mass B stars. However, the upper limit of Veq/VcritV_{\rm eq}/V_{\rm crit} that may separate normal B stars from emission line Be stars (where rotation promotes mass loss into a circumstellar disk) is smaller among the higher mass B stars. We compare the evolutionary trends of rotation (measured according to the polar gravity of the star) with recent models that treat internal mixing. The spin-down rates observed in the high mass subset (9M\sim 9 M_\odot) agree with predictions, but the rates are larger for the low mass group (3M\sim 3 M_\odot). The faster spin down in the low mass B stars matches well with the predictions based on conservation of angular momentum in individual spherical shells. Our results suggest the fastest rotators (that probably correspond to the emission line Be stars) are probably formed by evolutionary spin up (for the more massive stars) and by mass transfer in binaries (for the full range of B star masses).Comment: 44 pages, 10 figures, accepted for publication in Ap

    Maximum Significance at the LHC and Higgs Decays to Muons

    Get PDF
    We present a new way to define and compute the maximum significance achievable for signal and background processes at the LHC, using all available phase space information. As an example, we show that a light Higgs boson produced in weak--boson fusion with a subsequent decay into muons can be extracted from the backgrounds. The method, aimed at phenomenological studies, can be incorporated in parton--level event generators and accommodate parametric descriptions of detector effects for selected observables.Comment: 7 pages, 2 figures, changes to wording and new references, published versio

    A New Technique for Finding Needles in Haystacks: A Geometric Approach to Distinguishing Between a New Source and Random Fluctuations

    Full text link
    We propose a new test statistic based on a score process for determining the statistical significance of a putative signal that may be a small perturbation to a noisy experimental background. We derive the reference distribution for this score test statistic; it has an elegant geometrical interpretation as well as broad applicability. We illustrate the technique in the context of a model problem from high-energy particle physics. Monte Carlo experimental results confirm that the score test results in a significantly improved rate of signal detection.Comment: 5 pages, 4 figure

    A Model for the Stray Light Contamination of the UVCS Instrument on SOHO

    Full text link
    We present a detailed model of stray-light suppression in the spectrometer channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. The control of diffracted and scattered stray light from the bright solar disk is one of the most important tasks of a coronagraph. We compute the fractions of light that diffract past the UVCS external occulter and non-specularly pass into the spectrometer slit. The diffracted component of the stray light depends on the finite aperture of the primary mirror and on its figure. The amount of non-specular scattering depends mainly on the micro-roughness of the mirror. For reasonable choices of these quantities, the modeled stray-light fraction agrees well with measurements of stray light made both in the laboratory and during the UVCS mission. The models were constructed for the bright H I Lyman alpha emission line, but they are applicable to other spectral lines as well.Comment: 19 pages, 5 figures, Solar Physics, in pres

    The Machine Learning Landscape of Top Taggers

    Full text link
    Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.Comment: Yet another tagger included

    Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere

    Get PDF
    Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised. The lower chromosphere contains neutral atoms, the existence of which greatly increases the efficiency of the damping of waves due to collisional friction momentum transfer. More specifically the Cowling conductivity can be up to 12 orders of magnitude smaller than the Spitzer value, so that the main damping mechanism in this region is due to the collisions between neutrals and positive ions (Khodachenko et al. 2004, A&A, 422, 1073). Using values for the gas density and temperature as functions of height taken from the VAL C model of the quiet Sun (Vernazza et al. 1981, ApJS, 45, 635), an estimate is made for the dependance of the Cowling conductivity on height and strength of magnetic field. Using both analytic and numerical approaches the passage of Alfvén waves over a wide spectrum through this partially ionised region is investigated. Estimates of the efficiency of this region in the damping of Alfvén waves are made and compared for both approaches. We find that Alfvén waves with frequencies above 0.6 Hz are completely damped and frequencies below 0.01 Hz unaffected
    corecore