228 research outputs found

    The Tudor Privy Council, c.1540-1603

    Get PDF

    GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

    Full text link
    From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new graph-parallel systems (e.g., Pregel, GraphLab). By restricting the computation that can be expressed and introducing new techniques to partition and distribute the graph, these systems can efficiently execute iterative graph algorithms orders of magnitude faster than more general data-parallel systems. However, the same restrictions that enable the performance gains also make it difficult to express many of the important stages in a typical graph-analytics pipeline: constructing the graph, modifying its structure, or expressing computation that spans multiple graphs. As a consequence, existing graph analytics pipelines compose graph-parallel and data-parallel systems using external storage systems, leading to extensive data movement and complicated programming model. To address these challenges we introduce GraphX, a distributed graph computation framework that unifies graph-parallel and data-parallel computation. GraphX provides a small, core set of graph-parallel operators expressive enough to implement the Pregel and PowerGraph abstractions, yet simple enough to be cast in relational algebra. GraphX uses a collection of query optimization techniques such as automatic join rewrites to efficiently implement these graph-parallel operators. We evaluate GraphX on real-world graphs and workloads and demonstrate that GraphX achieves comparable performance as specialized graph computation systems, while outperforming them in end-to-end graph pipelines. Moreover, GraphX achieves a balance between expressiveness, performance, and ease of use

    Dual and triple therapy to prevent mother-to-child transmission of HIV in a resource-limited setting – lessons from a South African programme

    Get PDF
    Objective. To determine outcomes of pregnant women and their infants at McCord Hospital in Durban, South Africa, where dual and triple therapy to reduce HIV vertical transmission have been used since 2004 despite national guidelines recommending simpler regimens. Method. We retrospectively examined records of all pregnant women attending McCord Hospital for their first antenatal visit between 1 March 2004 and 28 February 2007. Uptake of HIV testing and HIV prevalence were determined, and clinical, immunological and virological outcomes of HIV-positive women and their infants, followed through to 6 months after delivery, were described. Results. The antenatal clinic was attended by 5 303 women; 4 891 (92%) had an HIV test, and 703 (14%) were HIV positive. The HIV-positive women were subsequently followed up: 653 (93%) received antiretroviral therapy or prophylaxis, including 424 (60%) who received triple therapy. Of the 699 live babies delivered, 661 (94%) received prophylaxis. At 6 weeks 571 babies (82%) were brought back for HIV testing; 16 (2.8%) were HIV positive. After 6 months, only 150 women (21%) were receiving follow-up care at the adult HIV clinic. Conclusion. Where a tailored approach to prevention of motherto-child transmission (PMTCT) is used, which attempts to maximise available technology and resources, good short-term transmission outcomes can be achieved. However, longer-term follow-up of mothers’ and babies’ health presents a challenge. Successful strategies to link women to ongoing care are crucial to sustain the gains of PMTCT programmes

    BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees

    Full text link
    The rising volume of datasets has made training machine learning (ML) models a major computational cost in the enterprise. Given the iterative nature of model and parameter tuning, many analysts use a small sample of their entire data during their initial stage of analysis to make quick decisions (e.g., what features or hyperparameters to use) and use the entire dataset only in later stages (i.e., when they have converged to a specific model). This sampling, however, is performed in an ad-hoc fashion. Most practitioners cannot precisely capture the effect of sampling on the quality of their model, and eventually on their decision-making process during the tuning phase. Moreover, without systematic support for sampling operators, many optimizations and reuse opportunities are lost. In this paper, we introduce BlinkML, a system for fast, quality-guaranteed ML training. BlinkML allows users to make error-computation tradeoffs: instead of training a model on their full data (i.e., full model), BlinkML can quickly train an approximate model with quality guarantees using a sample. The quality guarantees ensure that, with high probability, the approximate model makes the same predictions as the full model. BlinkML currently supports any ML model that relies on maximum likelihood estimation (MLE), which includes Generalized Linear Models (e.g., linear regression, logistic regression, max entropy classifier, Poisson regression) as well as PPCA (Probabilistic Principal Component Analysis). Our experiments show that BlinkML can speed up the training of large-scale ML tasks by 6.26x-629x while guaranteeing the same predictions, with 95% probability, as the full model.Comment: 22 pages, SIGMOD 201

    Impact of time-ordered measurements of the two states in a niobium superconducting qubit structure

    Full text link
    Measurements of thermal activation are made in a superconducting, niobium Persistent-Current (PC) qubit structure, which has two stable classical states of equal and opposite circulating current. The magnetization signal is read out by ramping the bias current of a DC SQUID. This ramping causes time-ordered measurements of the two states, where measurement of one state occurs before the other. This time-ordering results in an effective measurement time, which can be used to probe the thermal activation rate between the two states. Fitting the magnetization signal as a function of temperature and ramp time allows one to estimate a quality factor of 10^6 for our devices, a value favorable for the observation of long quantum coherence times at lower temperatures.Comment: 14 pages, 4 figure

    Novel gallium(III) complexes transported by MDR1 P-glycoprotein: potential PET imaging agents for probing P-glycoprotein-mediated transport activity in vivo

    Get PDF
    AbstractBackground: Multidrug resistance (MDR) mediated by expression of MDR1 P-glycoprotein (Pgp) represents one of the best characterized barriers to chemotherapy in cancer patients. Positron emission tomography (PET) agents for analysis of Pgp-mediated drug transport activity in vivo would enable noninvasive assessment of chemotherapeutic regimens and MDR gene therapy.Results: Candidate Schiff-base phenolic gallium(III) complexes were synthesized from their heptadentate precursors and gallium(III)acetylacetonate. Crystal structures demonstrated a hexacoordinated central gallium with overall trans-pseudo-octahedral geometry. Radiolabeled 67Ga-complexes were obtained in high purity and screened in drug-sensitive (Pgp−) and MDR (Pgp+) tumor cells. Compared with control, lead compound 6 demonstrated antagonist-reversible 55-fold lower accumulation in Pgp-expressing MDR cells. Furthermore, compared with wild-type control, quantitative pharmacokinetic analysis showed markedly increased penetration and retention of 6 in brain and liver tissues of mdr1a/b(−/−) gene disrupted mice, correctly mapping Pgp-mediated transport activity at the capillary blood–brain barrier and hepatocellular biliary cannalicular surface in vivo.Conclusions: These results indicate that gallium(III) complex 6 is recognized by MDR1 Pgp as an avid transport substrate, thereby providing a useful scaffold to generate 68Ga radiopharmaceuticals for molecular imaging of Pgp transport activity in tumors and tissues in vivo using PET

    THG113.31, a specific PGF2alpha receptor antagonist, induces human myometrial relaxation and BKCa channel activation

    Get PDF
    BACKGROUND: PGF2alpha exerts a significant contractile effect on myometrium and is central to human labour. THG113.31, a specific non-competitive PGF2alpha receptor (FP) antagonist, exerts an inhibitory effect on myometrial contractility. The BKCa channel is ubiquitously encountered in human uterine tissue and plays a significant role in modulating myometrial cell membrane potential and excitability. The objective of this study was to investigate potential BKCa channel involvement in the response of human myometrium to THG113.31. METHODS: Single and whole-cell electrophysiological BKCa channel recordings from freshly dispersed myocytes, were investigated in the presence and absence of THG113.31. Functional studies investigated the effects of THG113.31 on isolated spontaneous myometrial contractions, in the presence and absence of the BKCa channel blocker, iberiotoxin. RESULTS: Single channel recordings identified the BKCa channel as a target of THG113.31. THG113.31 significantly increased the open state probability of these channels [control 0.023+/-0.006; 10 microM THG113.31 0.087+/-0.012 (P = 0.009); and 50 microM THG113.31 0.1356+/-0.018 (P = 0.001)]. In addition, THG113.31 increased whole-cell BKCa currents over a range of membrane potentials, and this effect was reversed by 100 nanoM IbTX. Isometric tension studies demonstrated that THG113.31 exerted a significant concentration-dependent relaxant effect on human myometrial tissue and pre-incubation of strips with IbTX abolished this effect on spontaneously occurring contractions. CONCLUSION: These data suggests that activation of the BKCa channel may contribute, at least partially, to the uterorelaxant effect of THG113.31

    Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport

    Get PDF
    We have studied femtosecond carrier dynamics in InN nanowires grown by reactive vapor transport. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photogenerated carriers near and above the optical absorption edge of InN NWs where an interplay of state filling, photoinduced absorption, and band-gap renormalization have been observed. The interface between states filled by free carriers intrinsic to the InN NWs and empty states has been determined to be at 1.35 eV using CW optical transmission measurements. Transient absorption measurements determined the absorption edge at higher energy due to the additional injected photogenerated carriers following femtosecond pulse excitation. The non-degenerate white light pump-probe measurements revealed that relaxation of the photogenerated carriers occurs on a single picosecond timescale which appears to be carrier density dependent. This fast relaxation is attributed to the capture of the photogenerated carriers by defect/surface related states. Furthermore, intensity dependent measurements revealed fast energy transfer from the hot photogenerated carriers to the lattice with the onset of increased temperature occurring at approximately 2 ps after pulse excitation

    Compound Semiconductor Materials and Devices

    Get PDF
    Contains table of contents for Part I, table of contents for Section 1, an introduction, reports on fourteen research projects and a list of publications.Defense Advanced Research Projects Agency/National Center for Integrated Photonics TechnologyJoint Services Electronics Program Grant DAAH04-95-1-0038MIT Lincoln LaboratoryNational Science Foundation Graduate FellowshipU.S. Navy - Office of Naval ResearchAT&T Bell Laboratories FellowshipU.S. Army - Ft. MeadeNTT CorporationNational Science FoundationLockheed-Martin Corporatio
    • …
    corecore