10 research outputs found
Early Jurassic palaeoenvironments in the Surat Basin, Australia - marine incursion into eastern Gondwana
Interpretations of palaeodepositional environments are important for reconstructing Earth history. Only a few maps showing the Jurassic depositional environments in eastern Australia currently exist. Consequently, a detailed understanding of the setting of Australia in Gondwana is lacking. Core, wireline logs, two‐dimensional and three‐dimensional seismic from the Precipice Sandstone and Evergreen Formation in the Surat Basin have been used to construct maps showing the evolution of depositional environments through the Early Jurassic. The results indicate the succession consists of three third‐order sequences (Sequence 1 to Sequence 3) that were controlled by eustatic sea level. The lowstand systems tract in Sequence 1 comprises braidplain deposits, confined to a fairway that parallels the basin centre. The strata were initially deposited in two sub‐basins, with rivers flowing in different orientations in each sub‐basin. The transgressive systems tract of Sequence 1 to lowstand systems tract of Sequence 3 is dominated by fluvio–deltaic systems infilling a single merged basin centre. Finally, the transgressive and highstand systems tracts of Sequence 3 show nearshore environments depositing sediment into a shallow marine basin. In the youngest part of this interval, ironstone shoals are the most conspicuous facies, the thickness and number of which increase towards the north and east. This study interprets a corridor to the open ocean through the Clarence–Moreton Basin, or the Carpentaria and Papuan basins, evidence of which has been eroded. These results challenge a commonly held view that eastern Australia was not influenced by eustasy, and propose a more dynamic palaeogeographic setting comprising a mixture of fluvial, deltaic and shallow marine sedimentary environments. This work can be used to unravel the stratigraphic relationships between Mesozoic eastern Australian basins, or in other basins globally as an analogue for understanding the complex interplay of paralic depositional systems in data poor areas
Onshore Jurassic of Scandinavia and related areas
Jurassic strata are extensively distributed in offshore areas of Scandinavia, but onshore exposures are mostly restricted to southern Sweden (Skane), the Danish island of Bornholm, East Greenland, northern Norway (Andoya) and Svalbard. The latest Triassic and Jurassic saw active tectonism in Scandinavia associated with the break-up of Pangaea and rifting in the North Atlantic region and the North Sea. Rifting and the gradual rise in sea level controlled the structural and sedimentological architecture of Scandinavian basins throughout the Jurassic. The Upper Triassic is represented by continental red beds (claystones and arkosic conglomerates) indicative of arid conditions (until the Norian) and by coal measures characteristic of humid conditions (in the Rhaetian). Early Jurassic sedimentation in the region was dominated by fluvial-estuarine systems. Basin subsidence combined with the supply of huge volumes of sediments led to the accumulation of thick sand units on vast coastal plains in the Early and Middle Jurassic. During the Late Jurassic, transgressions led to deposition of extensive marine mud, although sandstones are locally preserved. Paralic depositional environments prevailed during the Late Jurassic and into the Early Cretaceous in southern Scandinavia. Scandinavia hosts a rich Jurassic palaeontological record including fossil plants, sharks, dinosaur footprints, ammonites, belemnites, ichthyosaurs and pliosaurs. Miospores provide the primary tool for biostratigraphic subdivision and correlation of the continental Jurassic sediments, whereas ammonites, dinoflagellates and foraminifera are the main groups employed for marine biostratigraphy. However, much work remains to be completed to achieve a highly resolved zonation scheme that integrates both marine and terrestrial indices
A review of Australia’s Mesozoic fishes
© 2020 Geological Society of Australia Inc., Australasian Palaeontologists. The Australian Mesozoic fish fauna is considered to be depauperate in comparison with fish faunas in the Northern Hemisphere. However, due to its geographical location as a potential radiation center in the Southern Hemisphere, Australia’s Mesozoic fish fauna is important for understanding fish radiations. Most of the modern fish groups originated during the Mesozoic, but the first records of a modern fish fauna (freshwater and marine) in Australia does not occur until the lower Paleogene. Here, we review all known fossil fish-bearing localities from the Mesozoic of Australia, to improve the understanding of the record. The apparent low Australian Mesozoic fish diversity is likely due to its understudied status of the constituent fossils rather than to a depauperate record. In addition, we review recent work with the aim of placing the Australian Mesozoic fish fauna in a global context. We review the taxonomy of Australian fossil fishes and conclude that the assignments of many actinopterygians need major revision within a modern phylogenetic context. The vast majority of chondrichthyans are yet to be formally described; to the contrary all of the known lungfish specimens have been described. This study considers the microscopic and fragmented remains of Mesozoic fish already found in Australia, allowing a more complete view of the diversity of the fishes that once inhabited this continent