3,600 research outputs found
Recommended from our members
Magmatic Intrusions into the Sulfur-Rich Carmel Formation on the Colorado Plateau, USA: Implications for the Mars 2020 Mission
We report on basaltic dikes in the Colorado Plateau, which crosscut sulfate bearing sediments and compare this to Martian basalts and basaltic sediments in contact with sulfate mineralizations
Recommended from our members
Alteration and Oxidiation of an Olivine Lamprophyre Dike from Southern Utah, USA: An Analog for Mars
We report on oxidized basaltic dike intrusions on the Colorado Plateau as analog for Martian basalt oxidation
A differential method for bounding the ground state energy
For a wide class of Hamiltonians, a novel method to obtain lower and upper
bounds for the lowest energy is presented. Unlike perturbative or variational
techniques, this method does not involve the computation of any integral (a
normalisation factor or a matrix element). It just requires the determination
of the absolute minimum and maximum in the whole configuration space of the
local energy associated with a normalisable trial function (the calculation of
the norm is not needed). After a general introduction, the method is applied to
three non-integrable systems: the asymmetric annular billiard, the many-body
spinless Coulombian problem, the hydrogen atom in a constant and uniform
magnetic field. Being more sensitive than the variational methods to any local
perturbation of the trial function, this method can used to systematically
improve the energy bounds with a local skilled analysis; an algorithm relying
on this method can therefore be constructed and an explicit example for a
one-dimensional problem is given.Comment: Accepted for publication in Journal of Physics
A Corticothalamic Switch: Controlling the Thalamus with Dynamic Synapses
SummaryCorticothalamic neurons provide massive input to the thalamus. This top-down projection may allow the cortex to regulate sensory processing by modulating the excitability of thalamic cells. Layer 6 corticothalamic neurons monosynaptically excite thalamocortical cells, but also indirectly inhibit them by driving inhibitory cells of the thalamic reticular nucleus. Whether corticothalamic activity generally suppresses or excites the thalamus remains unclear. Here we show that the corticothalamic influence is dynamic, with the excitatory-inhibitory balance shifting in an activity-dependent fashion. During low-frequency activity, corticothalamic effects are mainly suppressive, whereas higher-frequency activity (even a short bout of gamma frequency oscillations) converts the corticothalamic influence to enhancement. The mechanism of this switching depends on distinct forms of short-term synaptic plasticity across multiple corticothalamic circuit components. Our results reveal an activity-dependent mechanism by which corticothalamic neurons can bidirectionally switch the excitability and sensory throughput of the thalamus, possibly to meet changing behavioral demands
Access regulation and the transition from copper to fiber networks in telecoms
In this paper we study the impact of different forms of access obligations on firms' incentives to migrate from the legacy copper network to ultra-fast broadband infrastructures. We analyze three different kinds of regulatory interventions: geographical regulation of access to copper networks-where access prices are differentiated depending on whether or not an alternative fiber network has been deployed; access obligations on fiber networks and its interplay with wholesale copper prices; and, finally, a mandatory switch-off of the legacy copper network-to foster the transition to the higher quality fiber networks. Trading-off the different static and dynamic goals, the paper provides guidelines and suggestions for policy makers' decision
Recommended from our members
Magmatic intrusions into sulfur-rich sediments on the Colorado Plateau: an analog for Mars exploration
Mafic magmatism is a prevalent geologic process on Earth, and is a principal source of subsurface geologic change and energy influx on postNoachian Mars. While rare on Earth, the intrusion of mafic magmas into sulfur-rich soils and rocks is expected on Mars due to the observation of widespread high sulfur concentrations in Martian soils. On Mars, soils have been found to be rich in sulfur. Respectively, soil samples from Gusev Crater and Gale Crater contain between 4-8 weight percent, and 4-7 weight percent SO3, though ammounts[sic] as high as 31 weight percent have been measured in Gusev crater. With widespread sulfur-rich sediments and evidence of magmatism both ancient and young, mafic intrusions into rocks and sediments bearing significant quantities of sulfur species is expected on Mars. Processes associated with the magmatic intrusion of a sulfur-rich host, including degassing and alteration, may provide the requisite energy and nutrients for biological activity.On Earth, well exposed mafic dikes intrude the sulfur-rich sedimentary formations of the Jurassic San Rafael Group. Approximately 200 dikes, sills, and breccias can be found in proximity to the San Rafael Swell in Utah, and represent an Earth analog for a scenario of mafic magma intruding sulfur-rich sediments. Here we will investigate such an analog; a mafic dike intruding the sulfur-rich Jurassic Carmel Formation of the San Rafael Group
The Cosmological Time Function
Let be a time oriented Lorentzian manifold and the Lorentzian
distance on . The function is the cosmological
time function of , where as usual means that is in the causal
past of . This function is called regular iff for all
and also along every past inextendible causal curve. If the
cosmological time function of a space time is regular it has
several pleasant consequences: (1) It forces to be globally hyperbolic,
(2) every point of can be connected to the initial singularity by a
rest curve (i.e., a timelike geodesic ray that maximizes the distance to the
singularity), (3) the function is a time function in the usual sense, in
particular (4) is continuous, in fact locally Lipschitz and the second
derivatives of exist almost everywhere.Comment: 19 pages, AEI preprint, latex2e with amsmath and amsth
Dynamics of a lattice Universe
We find a solution to Einstein field equations for a regular toroidal lattice
of size L with equal masses M at the centre of each cell; this solution is
exact at order M/L. Such a solution is convenient to study the dynamics of an
assembly of galaxy-like objects. We find that the solution is expanding (or
contracting) in exactly the same way as the solution of a
Friedman-Lema\^itre-Robertson-Walker Universe with dust having the same average
density as our model. This points towards the absence of backreaction in a
Universe filled with an infinite number of objects, and this validates the
fluid approximation, as far as dynamics is concerned, and at the level of
approximation considered in this work.Comment: 14 pages. No figure. Accepted version for Classical and Quantum
Gravit
Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes
Recent theoretical work suggests that violation of the Equivalence Principle
might be revealed in a measurement of the fractional differential acceleration
between two test bodies -of different composition, falling in the
gravitational field of a source mass- if the measurement is made to the level
of or better. This being within the reach of ground based
experiments, gives them a new impetus. However, while slowly rotating torsion
balances in ground laboratories are close to reaching this level, only an
experiment performed in low orbit around the Earth is likely to provide a much
better accuracy.
We report on the progress made with the "Galileo Galilei on the Ground" (GGG)
experiment, which aims to compete with torsion balances using an instrument
design also capable of being converted into a much higher sensitivity space
test.
In the present and following paper (Part I and Part II), we demonstrate that
the dynamical response of the GGG differential accelerometer set into
supercritical rotation -in particular its normal modes (Part I) and rejection
of common mode effects (Part II)- can be predicted by means of a simple but
effective model that embodies all the relevant physics. Analytical solutions
are obtained under special limits, which provide the theoretical understanding.
A simulation environment is set up, obtaining quantitative agreement with the
available experimental data on the frequencies of the normal modes, and on the
whirling behavior. This is a needed and reliable tool for controlling and
separating perturbative effects from the expected signal, as well as for
planning the optimization of the apparatus.Comment: Accepted for publication by "Review of Scientific Instruments" on Jan
16, 2006. 16 2-column pages, 9 figure
- âŠ