6,245 research outputs found

    Exploring local quantum many-body relaxation by atoms in optical superlattices

    Get PDF
    We establish a setting - atoms in optical superlattices with period 2 - in which one can experimentally probe signatures of the process of local relaxation and apparent thermalization in non-equilibrium dynamics without the need of addressing single sites. This opens up a way to explore the convergence of subsystems to maximum entropy states in quenched quantum many-body systems with present technology. Remarkably, the emergence of thermal states does not follow from a coupling to an environment, but is a result of the complex non-equilibrium dynamics in closed systems. We explore ways of measuring the relevant signatures of thermalization in this analogue quantum simulation of a relaxation process, exploiting the possibilities offered by optical superlattices.Comment: 4 pages, 3 figures, version to published in Physical Review Letter

    Hydrodynamic Waves in Regions with Smooth Loss of Convexity of Isentropes. General Phenomenological Theory

    Full text link
    General phenomenological theory of hydrodynamic waves in regions with smooth loss of convexity of isentropes is developed based on the fact that for most media these regions in p-V plane are anomalously small. Accordingly the waves are usually weak and can be described in the manner analogous to that for weak shock waves of compression. The corresponding generalized Burgers equation is derived and analyzed. The exact solution of the equation for steady shock waves of rarefaction is obtained and discusses.Comment: RevTeX, 4 two-column pages, no figure

    On single-copy entanglement

    Full text link
    The largest eigenvalue of the reduced density matrix for quantum chains is shown to have a simple physical interpretation and power-law behaviour in critical systems. This is verified numerically for XXZ spin chains.Comment: 4 pages, 2 figures, note added, typo correcte

    Half the entanglement in critical systems is distillable from a single specimen

    Full text link
    We establish that the leading critical scaling of the single-copy entanglement is exactly one half of the entropy of entanglement of a block in critical infinite spin chains in a general setting, using methods of conformal field theory. Conformal symmetry imposes that the single-copy entanglement for critical many-body systems scales as E_1(\rho_L)=(c/6) \log L- (c/6) (\pi^2/\log L) + O(1/L), where L is the number of constituents in a block of an infinite chain and c corresponds to the central charge. This proves that from a single specimen of a critical chain, already half the entanglement can be distilled compared to the rate that is asymptotically available. The result is substantiated by a quantitative analysis for all translationally invariant quantum spin chains corresponding to general isotropic quasi-free fermionic models. An analytic example of the XY model shows that away from criticality the above simple relation is only maintained near the quantum phase transition point.Comment: 4 pages RevTeX, 1 figure, final versio

    Flashing annihilation term of a logistic kinetic as a mechanism leading to Pareto distributions

    Full text link
    It is shown analytically that the flashing annihilation term of a Verhulst kinetic leads to the power--law distribution in the stationary state. For the frequency of switching slower than twice the free growth rate this provides the quasideterministic source of a Levy noises at the macroscopic level.Comment: 1 fi

    Area laws for the entanglement entropy - a review

    Full text link
    Physical interactions in quantum many-body systems are typically local: Individual constituents interact mainly with their few nearest neighbors. This locality of interactions is inherited by a decay of correlation functions, but also reflected by scaling laws of a quite profound quantity: The entanglement entropy of ground states. This entropy of the reduced state of a subregion often merely grows like the boundary area of the subregion, and not like its volume, in sharp contrast with an expected extensive behavior. Such "area laws" for the entanglement entropy and related quantities have received considerable attention in recent years. They emerge in several seemingly unrelated fields, in the context of black hole physics, quantum information science, and quantum many-body physics where they have important implications on the numerical simulation of lattice models. In this Colloquium we review the current status of area laws in these fields. Center stage is taken by rigorous results on lattice models in one and higher spatial dimensions. The differences and similarities between bosonic and fermionic models are stressed, area laws are related to the velocity of information propagation, and disordered systems, non-equilibrium situations, classical correlation concepts, and topological entanglement entropies are discussed. A significant proportion of the article is devoted to the quantitative connection between the entanglement content of states and the possibility of their efficient numerical simulation. We discuss matrix-product states, higher-dimensional analogues, and states from entanglement renormalization and conclude by highlighting the implications of area laws on quantifying the effective degrees of freedom that need to be considered in simulations.Comment: 28 pages, 2 figures, final versio

    Correlations, spectral gap, and entanglement in harmonic quantum systems on generic lattices

    Full text link
    We investigate the relationship between the gap between the energy of the ground state and the first excited state and the decay of correlation functions in harmonic lattice systems. We prove that in gapped systems, the exponential decay of correlations follows for both the ground state and thermal states. Considering the converse direction, we show that an energy gap can follow from algebraic decay and always does for exponential decay. The underlying lattices are described as general graphs of not necessarily integer dimension, including translationally invariant instances of cubic lattices as special cases. Any local quadratic couplings in position and momentum coordinates are allowed for, leading to quasi-free (Gaussian) ground states. We make use of methods of deriving bounds to matrix functions of banded matrices corresponding to local interactions on general graphs. Finally, we give an explicit entanglement-area relationship in terms of the energy gap for arbitrary, not necessarily contiguous regions on lattices characterized by general graphs.Comment: 26 pages, LaTeX, published version (figure added

    Single-copy entanglement in critical spin chains

    Full text link
    We introduce the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results -- which refine previous results on the divergence of block entropy as the rate at which EPR pairs can be distilled from many identically prepared chains, and which apply to single systems as encountered in actual experimental situations -- are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasi-free fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of ~(1/6) log_2(L), and contrast it with the block entropy. The role of superselection rules on single-copy entanglement in systems consisting of indistinguishable particles is emphasized.Comment: 5 pages, RevTeX, final versio

    Divergences in the Effective Action for Acausal Spacetimes

    Get PDF
    The 1--loop effective Lagrangian for a massive scalar field on an arbitrary causality violating spacetime is calculated using the methods of Euclidean quantum field theory in curved spacetime. Fields of spin 1/2, spin 1 and twisted field configurations are also considered. In general, we find that the Lagrangian diverges to minus infinity at each of the nth polarised hypersurfaces of the spacetime with a structure governed by a DeWitt-Schwinger type expansion.Comment: 17 pages, Late
    • …
    corecore