62 research outputs found

    General Perfectly Secure Message Transmission Using Linear Codes

    Full text link
    We study perfectly secure message transmission (PSMT) from a sender S to a receiver R in the general adversary model. In this model, instead of being bounded by a threshold, the Byzantine adversary in a network is characterized by an adversary structure. By regarding monotone general access structures as linear codes, we introduce some new properties that allow us to design efficient PSMT protocols. We give a number of efficient PSMT protocols in both undirected and directed network graphs. These protocols comprehensively improve the transmission complexity of some previous results in this area. More significantly, as all of our protocols are executed in either 3 or 2 rounds, our result is the first, in the context of PSMT in the general adversary model, to have constant round complexity when using interaction

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Endothelial cell chimerism after renal transplantation and vascular rejection.

    No full text
    BACKGROUND: The blood vessels of a transplanted organ are the interface between donor and recipient. The endothelium in the blood vessels is thought to be the major target for graft rejection. Endothelial cells of a transplanted organ are believed to remain of donor origin after transplantation. We aimed to verify this concept. METHODS: We studied biopsy samples from 12 renal transplants for the presence of endothelial cells of recipient origin. We used three different techniques: immunohistochemistry for MHC class-I antigens, immunohistochemistry for ABO-blood-group antigens, and in-situ hybridisation for X and Y chromosomes. After we had confirmed that these techniques did identify endothelial cells of recipient origin, tests were done in a second group of 26 patients to find out whether endothelial chimerism correlated with graft rejection. FINDINGS: We found a strong correlation between the percentage of recipient endothelial cells in the peritubular capillaries and the type of graft rejection (r = 0.71, p < 0.0001). These cells were found mainly in grafts of patients who had had rejection, especially among patients with vascular rejection. In grafts of patients without rejection only sporadically recipient endothelial cells were detectable. INTERPRETATION: Our data show that endothelial cells of the recipient can replace those of the donor. This replacement is associated with graft rejection. We postulate that endothelium that is damaged by vascular rejection is repaired by endothelial cells of the recipient

    Secure computation from random error correcting codes

    No full text
    Abstract. Secure computation consists of protocols for secure arithmetic: secret values are added and multiplied securely by networked processors. The striking feature of secure computation is that security is maintained even in the presence of an adversary who corrupts a quorum of the processors and who exercises full, malicious control over them. One of the fundamental primitives at the heart of secure computation is secret-sharing. Typically, the required secret-sharing techniques build on Shamir’s scheme, which can be viewed as a cryptographic twist on the Reed-Solomon error correcting code. In this work we further the connections between secure computation and error correcting codes. We demonstrate that threshold secure computation in the secure channels model can be based on arbitrary codes. For a network of size n, we then show a reduction in communication for secure computation amounting to a multiplicative polylogarithmic factor (in n) compared to classical methods for small, e.g., constant size fields, while tolerating t &lt; (

    The Round Complexity of Perfectly Secure General VSS

    No full text

    Traits related to efficient acquisition and use of phosphorus promote diversification in Proteaceae in phosphorus‐impoverished landscapes

    No full text
    Published online: 22 March 2021Background and aims: Plant species richness increases with declining soil phosphorus (P) availability, especially for Proteaceae in old infertile landscapes. This difference in richness might be attributed to faster diversification in lineages adapted to P-impoverished soils, i.e. species that possess specialised P-acquisition strategies, and have lower leaf P concentration ([P]) and higher seed [P]. Alternatively, a longer time for species accumulation might contribute to high species richness in low-P environments due to the geological stability of the landscapes in which they evolved. Methods: We assessed differences in diversification of Proteaceae in P-impoverished vs. nutrient-rich environments and whether these were linked to adaptations to P-impoverished soils. We explored mature leaf and seed [P] and investigated how these traits changed over the evolutionary history of the family, and within two species-rich genera (Banksia, Hakea). Results: Faster diversification was correlated with lower leaf and higher seed [P] for species-rich genera across the Proteaceae. For Banksia and Hakea, diversification rates peaked at relatively low leaf [P], but not at the lowest leaf [P]. Ancestral state reconstructions indicated that low leaf [P] is a trait that was likely present in the early evolution of the Proteaceae, with recent transitions to higher leaf [P] across several species-poor rainforest genera. Conclusions: Diversification of Proteaceae correlated strongly with P-related traits. In an evolutionary context, functional cluster roots, low leaf [P] and high seed [P] were likely key innovations allowing diversification. Selection for low leaf [P] early in the evolutionary history of Proteaceae pre-adapted ancestors of this family to diversify into oligotrophic environments. We discuss how our findings are likely relevant for understanding diversification dynamics of other plant families that occur in P-impoverished environments.Patrick E. Hayes, Francis J. Nge, Michael D. Cramer, Patrick M. Finnegan, Peili Fu, Stephen D. Hopper ... et al
    corecore