249 research outputs found
The tool switching problem revisited.
In this note we study the complexity of the tool switching problem with non-uniform tool sizes. More speci cally, we consider the problem where the job sequence is given as part of the input. We show that the resulting tooling problem is strongly NP-complete, even in case of unit loading and unloading costs. However, we show that if the capacity of the tool magazine is also given as part of the input, the problem is solvable in polynomial time.Research; Studies; Complexity; Job; Costs; Time;
A lower bound on CNF encodings of the at-most-one constraint
Constraint "at most one" is a basic cardinality constraint which requires
that at most one of its boolean inputs is set to . This constraint is
widely used when translating a problem into a conjunctive normal form (CNF) and
we investigate its CNF encodings suitable for this purpose. An encoding differs
from a CNF representation of a function in that it can use auxiliary variables.
We are especially interested in propagation complete encodings which have the
property that unit propagation is strong enough to enforce consistency on input
variables. We show a lower bound on the number of clauses in any propagation
complete encoding of the "at most one" constraint. The lower bound almost
matches the size of the best known encodings. We also study an important case
of 2-CNF encodings where we show a slightly better lower bound. The lower bound
holds also for a related "exactly one" constraint.Comment: 38 pages, version 3 is significantly reorganized in order to improve
readabilit
Upper and Lower Bounds for Weak Backdoor Set Detection
We obtain upper and lower bounds for running times of exponential time
algorithms for the detection of weak backdoor sets of 3CNF formulas,
considering various base classes. These results include (omitting polynomial
factors), (i) a 4.54^k algorithm to detect whether there is a weak backdoor set
of at most k variables into the class of Horn formulas; (ii) a 2.27^k algorithm
to detect whether there is a weak backdoor set of at most k variables into the
class of Krom formulas. These bounds improve an earlier known bound of 6^k. We
also prove a 2^k lower bound for these problems, subject to the Strong
Exponential Time Hypothesis.Comment: A short version will appear in the proceedings of the 16th
International Conference on Theory and Applications of Satisfiability Testin
The cyclic-routing UAV problem is PSPACE-complete
© 2015, Springer-Verlag Berlin Heidelberg. Consider a finite set of targets, with each target assigned a relative deadline, and each pair of targets assigned a fixed transit flight time. Given a flock of identical UAVs, can one ensure that every target is repeatedly visited by some UAV at intervals of duration at most the target’s relative deadline? The Cyclic-Routing UAV Problem (cr-uav) is the question of whether this task has a solution. This problem can straightforwardly be solved in PSPACE by modelling it as a network of timed automata. The special case of there being a single UAV is claimed to be NP-complete in the literature. In this paper, we show that the cr-uav Problem is in fact PSPACE-complete even in the single-UAV case
- …