359 research outputs found
To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils?
Soil tillage practices have a profound influence on the physical properties of soil and the greenhouse gas (GHG) balance. However there have been very few integrated studies on the emission of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and soil biophysical and chemical characteristics under different soil management systems. We recorded a significantly higher net global warming potential under conventional tillage systems (26–31% higher than zero tillage systems). Crucially the 3-D soil pore network, imaged using X-ray Computed Tomography, modified by tillage played a significant role in the flux of CO2 and CH4. In contrast, N2O flux was determined mainly by microbial biomass carbon and soil moisture content. Our work indicates that zero tillage could play a significant role in minimising emissions of GHGs from soils and contribute to efforts to mitigate against climate change
Maternal fructose and/or salt intake and reproductive outcome in the rat: effects on growth, fertility, sex ratio, and birth order
Maternal diet can significantly skew the secondary sex ratio away from the expected value of 0.5 (proportion males), but the details of how diet may do this are unclear. Here, we altered dietary levels of salt (4% salt in the feed) and/or fructose (10% in the drinking water) of pregnant rats to model potential effects that consumption of a "Western diet" might have on maternofetal growth, development, and sex ratio. We demonstrate that excess fructose consumption before and during pregnancy lead to a marked skew in the secondary sex ratio (proportion of males, 0.60; P < 0.006). The effect was not mediated by selective developmental arrest of female embryos or influenced by fetal position in the uterine horn or sex-specific effects on sperm motility, suggesting a direct effect of glycolyzable monosaccharide on the maternal ovary and/or ovulated oocyte. Furthermore, combined excess maternal consumption of salt and fructose-sweetened beverage significantly reduced fertility, reflected as a 50% reduction in preimplantation and term litter size. In addition, we also noted birth order effects in the rat, with sequential implantation sites tending to be occupied by the same sex
Recommended from our members
Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species
High-density oligonucleotide (oligo) arrays are a powerful tool for transcript profiling. Arrays based on GeneChip® technology are amongst the most widely used, although GeneChip® arrays are currently available for only a small number of plant and animal species. Thus, we have developed a method to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species and tested the method by analysing the transcriptome of Brassica oleracea L., a species for which no GeneChip® array is available, using a GeneChip® array designed for Arabidopsis thaliana (L.) Heynh. Genomic DNA from B. oleracea was labelled and hybridised to the ATH1-121501 GeneChip® array. Arabidopsis thaliana probe-pairs that hybridised to the B. oleracea genomic DNA on the basis of the perfect-match (PM) probe signal were then selected for subsequent B. oleracea transcriptome analysis using a .cel file parser script to generate probe mask files. The transcriptional response of B. oleracea to a mineral nutrient (phosphorus; P) stress was quantified using probe mask files generated for a wide range of gDNA hybridisation intensity thresholds. An example probe mask file generated with a gDNA hybridisation intensity threshold of 400 removed > 68 % of the available PM probes from the analysis but retained >96 % of available A. thaliana probe-sets. Ninety-nine of these genes were then identified as significantly regulated under P stress in B. oleracea, including the homologues of P stress responsive genes in A. thaliana. Increasing the gDNA hybridisation intensity thresholds up to 500 for probe-selection increased the sensitivity of the GeneChip® array to detect regulation of gene expression in B. oleracea under P stress by up to 13-fold. Our open-source software to create probe mask files is freely available http://affymetrix.arabidopsis.info/xspecies/ webcite and may be used to facilitate transcriptomic analyses of a wide range of plant and animal species in the absence of custom arrays
Identification of gene expression logical invariants in Arabidopsis.
Numerous gene expression datasets from diverse tissue samples from the plant variety Arabidopsis thaliana have been already deposited in the public domain. There have been several attempts to do large scale meta-analyses of all of these datasets. Most of these analyses summarize pairwise gene expression relationships using correlation, or identify differentially expressed genes in two conditions. We propose here a new large scale meta-analysis of the publicly available Arabidopsis datasets to identify Boolean logical relationships between genes. Boolean logic is a branch of mathematics that deals with two possible values. In the context of gene expression datasets we use qualitative high and low expression values. A strong logical relationship between genes emerges if at least one of the quadrants is sparsely populated. We pointed out serious issues in the data normalization steps widely accepted and published recently in this context. We put together a web resource where gene expression relationships can be explored online which helps visualize the logical relationships between genes. We believe that this website will be useful in identifying important genes in different biological context. The web link is http://hegemon.ucsd.edu/plant/
Effect of feeding system on enteric methane emissions from individual dairy cows on commercial farms
This study investigated the effects of feeding system on diurnal enteric methane (CH4) emissions from individual cows on commercial farms. Data were obtained from 830 cows across 12 farms, and data collated included production records, CH4 measurements (in the breath of cows using CH4 analysers at robotic milking stations for at least seven days) and diet composition. Cows received either a partial mixed ration (PMR) or a PMR with grazing. A linear mixed model was used to describe variation in CH4 emissions per individual cow and assess the effect of feeding system. Methane emissions followed a consistent diurnal pattern across both feeding systems, with emissions lowest between 05:00 and 08:59, and with a peak concentration between 17:00 and 20:59. No overall difference in emissions was found between feeding systems studied; however, differences were found in the diurnal pattern of CH4 emissions between feeding systems. The response in emissions to increasing dry matter intake was higher for cows fed PMR with grazing. This study showed that repeated spot measurements of CH4 emissions whilst cows are milked can be used to assess the effects of feeding system and potentially benchmark farms on level of emissions
Recommended from our members
Evidence of neutral transcriptome evolution in plants
The transcriptome of an organism is its set of gene transcripts (mRNAs) at a defined spatial and temporal locus. Because gene expression is affected markedly by
environmental and developmental perturbations, it is widely assumed that transcriptome divergence among taxa represents adaptive phenotypic selection. This assumption has been challenged by neutral theories which propose that stochastic
processes drive transcriptome evolution. To test for evidence of neutral transcriptome evolution in plants, we quantified 18 494 gene transcripts in nonsenescent leaves of 14 taxa of Brassicaceae using robust cross-species transcriptomics which includes a two-step physical and in silicobased normalization procedure based on DNA similarity among taxa. Transcriptome divergence correlates positively with evolutionary distance between taxa and with variation in gene expression among samples. Results are similar for pseudogenes and chloroplast genes evolving at different rates. Remarkably, variation in transcript abundance among root-cell samples correlates positively with
transcriptome divergence among root tissues and among taxa.
Because neutral processes affect transcriptome evolution in plants, many differences in gene expression among or within taxa may be nonfunctional, reflecting ancestral
plasticity and founder effects. Appropriate null models are required when comparing transcriptomes in space and time
Variation in enteric methane emissions among cows on commercial dairy farms
Methane (CH4) emissions by dairy cows vary with feed intake and diet composition. Even when fed on the same diet at the same intake, however, variation between cows in CH4 emissions can be substantial. The extent of variation in CH4 emissions among dairy cows on commercial farms is unknown, but developments in methodology now permit quantification of CH4 emissions by individual cows under commercial conditions. The aim of this research was to assess variation among cows in emissions of eructed CH4 during milking on commercial dairy farms. Enteric CH4 emissions from 1,964 individual cows across 21 farms were measured for at least 7 days per cow using CH4 analysers at robotic milking stations. Cows were predominantly of Holstein Friesian breed and remained on the same feeding systems during sampling. Effects of explanatory variables on average CH4 emissions per individual cow were assessed by fitting a linear mixed model. Significant effects were found for week of lactation, daily milk yield and farm. The effect of milk yield on CH4 emissions varied among farms. Considerable variation in CH4 emissions was observed among cows after adjusting for fixed and random effects, with the coefficient of variation ranging from 22 to 67% within farms. This study confirms that enteric CH4 emissions vary among cows on commercial farms, suggesting that there is considerable scope for selecting individual cows and management systems with reduced emissions
Responsible Research and Innovation (RRI) Prompts and Practice Cards: a tool to support responsible practice
Researchers often find it hard to know where, when and how to start when applying Responsible Innovation approaches to their own research projects and proposals. Based on experience supporting a range of researchers and projects, we have developed a small set of concept cards, the Responsible Research and Innovation (RRI) Prompts and Practice cards, which highlight 18 different aspects of RRI, each with key questions and prompts for action. Initial use with groups of researchers and PhD students has found them to be accessible and effective in prompting reflection and discussion, including raising previously unconsidered aspects of responsible innovation. Based on this feedback we are now developing a second release of the cards
A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome
Independent and combined effects of diethylhexyl phthalate and polychlorinated biphenyl 153 on sperm quality in the human and dog
A temporal decline in human and dog sperm quality is thought to reflect a common environmental aetiology. This may reflect direct effects of seminal chemicals on sperm function and quality. Here we report the effects of diethylhexyl phthalate (DEHP) and polychlorinated biphenyl 153 (PCB153) on DNA fragmentation and motility in human and dog sperm. Human and dog semen was collected from registered donors (n = 9) and from stud dogs (n = 11) and incubated with PCB153 and DEHP, independently and combined, at 0x, 2x, 10x and 100x dog testis concentrations. A total of 16 treatments reflected a 4 × 4 factorial experimental design. Although exposure to DEHP and/or PCB153 alone increased DNA fragmentation and decreased motility, the scale of dose-related effects varied with the presence and relative concentrations of each chemical (DEHP.PCB interaction for: DNA fragmentation; human p < 0.001, dog p < 0.001; Motility; human p < 0.001, dog p < 0.05). In both human and dog sperm, progressive motility negatively correlated with DNA fragmentation regardless of chemical presence (Human: P < 0.0001, r = −0.36; dog P < 0.0001, r = −0.29). We conclude that DEHP and PCB153, at known tissue concentrations, induce similar effects on human and dog sperm supporting the contention of the dog as a sentinel species for human exposure
- …
