11,638 research outputs found

    EXIST: Mission Design Concept and Technology Program

    Get PDF
    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed very large area coded aperture telescope array, incorporating 8m^2 of pixellated Cd-Zn-Te (CZT) detectors, to conduct a full-sky imaging and temporal hard x-ray (10-600 keV) survey each 95min orbit. With a sensitivity (5sigma, 1yr) of ~0.05mCrab (10-150 keV), it will extend the ROSAT soft x-ray (0.5-2.5keV) and proposed ROSITA medium x-ray (2-10 keV) surveys into the hard x-ray band and enable identification and study of sources ~10-20X fainter than with the ~15-100keV survey planned for the upcoming Swift mission. At ~100-600 keV, the ~1mCrab sensitivity is 300X that achieved in the only previous (HEAO-A4, non-imaging) all-sky survey. EXIST will address a broad range of key science objectives: from obscured AGN and surveys for black holes on all scales, which constrain the accretion history of the universe, to the highest sensitivity and resolution studies of gamma-ray bursts it will conduct as the Next Generation Gamma-Ray Burst mission. We summarize the science objectives and mission drivers, and the results of a mission design study for implementation as a free flyer mission, with Delta IV launch. Key issues affecting the telescope and detector design are discussed, and a summary of some of the current design concepts being studied in support of EXIST is presented for the wide-field but high resolution coded aperture imaging and very large area array of imaging CZT detectors. Overall mission design is summarized, and technology development needs and a development program are outlined which would enable the launch of EXIST by the end of the decade, as recommended by the NAS/NRC Decadal Survey.Comment: 14 pages, 8 figures, 2 tables. PDF file only. Presented at SPIE (Aug. 2002) and to appear in Proc. SPIE, vol. 485

    Cytokine gene polymorphisms in preterm infants with necrotising enterocolitis: genetic association study

    Get PDF
    BACKGROUND The inflammatory cytokine cascade is implicated in the pathogenesis of necrotising enterocolitis (NEC). Genetic association studies of cytokine polymorphisms may help to detect molecular mechanisms that are causally related to the disease process. AIM To examine associations between the common genetic variants in candidate inflammatory cytokine genes and NEC in preterm infants. METHODS Multi-centre case-control and genetic association study. DNA samples were collected from 50 preterm infants with NEC and 50 controls matched for gestational age and ethnic group recruited to a multi-centre case-control study. Ten candidate single-nucleotide polymorphisms in cytokines previously associated with infectious or inflammatory diseases were genotyped. The findings were included in random-effects meta-analyses with data from previous genetic association studies. RESULTS All allele distributions were in Hardy-Weinberg equilibrium. None of the studied cytokine polymorphisms was significantly associated with NEC. Four previous genetic association studies of cytokine polymorphisms and NEC in preterm infants were found. Meta-analyses were possible for several single-nucleotide polymorphisms. These increased the precision of the estimates of effect size but did not reveal any significant associations. CONCLUSIONS The available data are not consistent with more than modest associations between these candidate cytokine variant alleles and NEC in preterm infants. Data from future association studies of these polymorphisms may be added to the meta-analyses to obtain more precise estimates of effects sizes.The study was funded by Tenovus (Scotland)

    Nonperturbative corrections to moments of the decay B -> X_s l^+ l^-

    Full text link
    We study nonperturbative corrections to the inclusive rare decay B -> X_s l^+ l^- by performing an operator product expansion (OPE) to O(1/m_b^3). The values of the matrix elements entering at this order are unknown and introduce uncertainties into physical quantities. We study uncertainties introduced into the partially integrated rate, moments of the hadronic spectrum, as well as the forward-backward asymmetry. We find that for large dilepton invariant mass q^2 > M_{\psi'}^2 these uncertainties are large. We also assess the possibility of extracting the HQET parameters \lambda_1 and \bar{\Lambda} using data from this process.Comment: 24 pages, revtex, 4 figures, added an appendix with details, results unchange

    Detector and Telescope Development for ProtoEXIST and Fine Beam Measurements of Spectral Response of CZT Detectors

    Get PDF
    We outline our plan to develop ProtoEXIST, a balloon-borne prototype experiment for the Energetic X-ray Imaging Survey Telescope (EXIST) for the Black Hole Finder Probe. EXIST will consist of multiple wide-field hard X-ray coded-aperture telescopes. The current design of the EXIST mission employs two types of telescope systems: high energy telescopes (HETs) using CZT detectors, and low energy telescopes (LETs) using Si detectors. With ProtoEXIST, we will develop and demonstrate the technologies required for the EXIST HETs. As part of our development efforts, we also present recent laboratory measurements of the spectral response and efficiency variation of imaging CZT detectors on a fine scale (~0.5 mm). The preliminary results confirm the need for multi-pixel readouts and small inter-pixel gaps to achieve uniform spectral response and high detection efficiency across detectors.Comment: 9 pages, 12 figures, 1 table, appears in SPIE 2005 proceedings (5898: UV, X-ray, and Gamma-ray Space Instrumentation for Astronomy XIV

    Nonperturbative corrections to B -> X_s l^+ l^- with phase space restrictions

    Full text link
    We study nonperturbative corrections up to O(1/m_b^3) in the inclusive rare B decay B -> X_s l^+ l^- by performing an operator product expansion. The values of the matrix elements entering at this order are unknown and introduce uncertainties into physical quantities. Imposing a phase space cut to eliminate the ccˉc \bar{c} resonances we find that the O(1/m_b^3) corrections introduce an O(10%) uncertainty in the measured rate. We also find that the contributions arising at O(1/m_b^3) are comparable to the ones arising at O(1/m_b^2) over the entire region of phase space.Comment: 7 pages, 2 figures, revte

    Magnetic Flux Braiding: Force-Free Equilibria and Current Sheets

    Get PDF
    We use a numerical nonlinear multigrid magnetic relaxation technique to investigate the generation of current sheets in three-dimensional magnetic flux braiding experiments. We are able to catalogue the relaxed nonlinear force-free equilibria resulting from the application of deformations to an initially undisturbed region of plasma containing a uniform, vertical magnetic field. The deformations are manifested by imposing motions on the bounding planes to which the magnetic field is anchored. Once imposed the new distribution of magnetic footpoints are then taken to be fixed, so that the rest of the plasma must then relax to a new equilibrium configuration. For the class of footpoint motions we have examined, we find that singular and nonsingular equilibria can be generated. By singular we mean that within the limits imposed by numerical resolution we find that there is no convergence to a well-defined equilibrium as the number of grid points in the numerical domain is increased. These singular equilibria contain current "sheets" of ever-increasing current intensity and decreasing width; they occur when the footpoint motions exceed a certain threshold, and must include both twist and shear to be effective. On the basis of these results we contend that flux braiding will indeed result in significant current generation. We discuss the implications of our results for coronal heating.Comment: 13 pages, 12 figure

    Static versus dynamic fluctuations in the one-dimensional extended Hubbard model

    Full text link
    The extended Hubbard Hamiltonian is a widely accepted model for uncovering the effects of strong correlations on the phase diagram of low-dimensional systems, and a variety of theoretical techniques have been applied to it. In this paper the world-line quantum Monte Carlo method is used to study spin, charge, and bond order correlations of the one-dimensional extended Hubbard model in the presence of coupling to the lattice. A static alternating lattice distortion (the ionic Hubbard model) leads to enhanced charge density wave correlations at the expense of antiferromagnetic order. When the lattice degrees of freedom are dynamic (the Hubbard-Holstein model), we show that a similar effect occurs even though the charge asymmetry must arise spontaneously. Although the evolution of the total energy with lattice coupling is smooth, the individual components exhibit sharp crossovers at the phase boundaries. Finally, we observe a tendency for bond order in the region between the charge and spin density wave phases.Comment: Corrected typos. (10 pages, 9 figures

    Direct Urca neutrino rate in colour superconducting quark matter

    Full text link
    If deconfined quark matter exists inside compact stars, the primary cooling mechanism is neutrino radiation via the direct Urca processes d->u+e+antinu_e and u+e->d+nu_e. Below a critical temperature, T_c, quark matter forms a colour superconductor, one possible manifestation of which is a condensate of quark Cooper pairs in an electric-charge neutralising background of electrons. We compute the neutrino emission rate from such a phase, including charged pair-breaking and recombination effects, and find that on a material temperature domain below T_c the pairing-induced suppression of the neutrino emission rate is not uniformly exponential. If gapless modes are present in the condensed phase, the emissivity at low temperatures is moderately enhanced above that of completely unpaired matter. The importance of charged current pair-breaking processes for neutrino emission both in the fully gapped and partially gapped regimes is emphasised.Comment: 5 pages, 2 figures; to appear in Phys. Rev. C (Rapid Comm.

    Proposed Next Generation GRB Mission: EXIST

    Get PDF
    A next generation Gamma Ray Burst (GRB) mission to follow the upcoming Swift mission is described. The proposed Energetic X-ray Imaging Survey Telescope, EXIST, would yield the limiting (practical) GRB trigger sensitivity, broad-band spectral and temporal response, and spatial resolution over a wide field. It would provide high resolution spectra and locations for GRBs detected at GeV energies with GLAST. Together with the next generation missions Constellation-X, NGST and LISA and optical-survey (LSST) telescopes, EXIST would enable GRBs to be used as probes of the early universe and the first generation of stars. EXIST alone would give ~10-50" positions (long or short GRBs), approximate redshifts from lags, and constrain physics of jets, orphan afterglows, neutrinos and SGRs.Comment: 4 pages, 4 figures. Presented at Woods Hole GRB Conf. (2001); to appear in AIP Conf. Pro
    • 

    corecore