101 research outputs found

    Finite volume stiffness matrix for solving anisotropic cardiac propagation in 2-D and 3-D unstructured meshes

    Full text link
    The finite volume method (FVM) has been shown recently to be an effective method for discretizing the reaction-diffusion equations that govern wavefront propagation in anisotropic cardiac tissue, as it can naturally handle both complex geometries and no flux boundary conditions without the use of ghost nodes. This communication presents an alternative formulation of FVM for triangle and tetrahedral meshes using the concept of dual basis. An algorithm based on this form is given that leads to an efficient computation of the stiffness matrix, facilitating the incorporation of space adaptive schemes and time varying material properties into numerical simulations of cardiac dynamics

    Modeling atrial arrhythmias : impact on clinical diagnosis and therapies

    Full text link
    Atrial arrhythmias are the most frequent sustained rhythm disorders in humans and often lead to severe complications such as heart failure and stroke. Despite the important insights provided by animal models into the mechanisms of atrial arrhythmias, direct translation of experimental findings to new therapies in patients has not been straightforward. With the advances in computer technology, large-scale electroanatomical computer models of the atria that integrate information from the molecular to organ scale have reached a level of sophistication that they can be used to interpret the outcome of experimental and clinical studies and aid in the rational design of therapies. This paper reviews the state-of-the-art of computer models of the electrical dynamics of the atria and discusses the evolving role of simulation in assisting the clinical diagnosis and treatment of atrial arrhythmias

    Emergent bursting and synchrony in computer simulations of neuronal cultures

    Get PDF
    Experimental studies of neuronal cultures have revealed a wide variety of spiking network activity ranging from sparse, asynchronous firing to distinct, network-wide synchronous bursting. However, the functional mechanisms driving these observed firing patterns are not well understood. In this work, we develop an in silico network of cortical neurons based on known features of similar in vitro networks. The activity from these simulations is found to closely mimic experimental data. Furthermore, the strength or degree of network bursting is found to depend on a few parameters: the density of the culture, the type of synaptic connections, and the ratio of excitatory to inhibitory connections. Network bursting gradually becomes more prominent as either the density, the fraction of long range connections, or the fraction of excitatory neurons is increased. Interestingly, biologically prevalent values of parameters result in networks that are at the transition between strong bursting and sparse firing. Using principal components analysis, we show that a large fraction of the variance in firing rates is captured by the first component for bursting networks. These results have implications for understanding how information is encoded at the population level as well as for why certain network parameters are ubiquitous in cortical tissue

    A binary method for simple and accurate two-dimensional cursor control from EEG with minimal subject training

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain-computer interfaces (BCI) use electroencephalography (EEG) to interpret user intention and control an output device accordingly. We describe a novel BCI method to use a signal from five EEG channels (comprising one primary channel with four additional channels used to calculate its Laplacian derivation) to provide two-dimensional (2-D) control of a cursor on a computer screen, with simple threshold-based binary classification of band power readings taken over pre-defined time windows during subject hand movement.</p> <p>Methods</p> <p>We tested the paradigm with four healthy subjects, none of whom had prior BCI experience. Each subject played a game wherein he or she attempted to move a cursor to a target within a grid while avoiding a trap. We also present supplementary results including one healthy subject using motor imagery, one primary lateral sclerosis (PLS) patient, and one healthy subject using a single EEG channel without Laplacian derivation.</p> <p>Results</p> <p>For the four healthy subjects using real hand movement, the system provided accurate cursor control with little or no required user training. The average accuracy of the cursor movement was 86.1% (SD 9.8%), which is significantly better than chance (p = 0.0015). The best subject achieved a control accuracy of 96%, with only one incorrect bit classification out of 47. The supplementary results showed that control can be achieved under the respective experimental conditions, but with reduced accuracy.</p> <p>Conclusion</p> <p>The binary method provides naïve subjects with real-time control of a cursor in 2-D using dichotomous classification of synchronous EEG band power readings from a small number of channels during hand movement. The primary strengths of our method are simplicity of hardware and software, and high accuracy when used by untrained subjects.</p

    Unscented Kalman Filter for Brain-Machine Interfaces

    Get PDF
    Brain machine interfaces (BMIs) are devices that convert neural signals into commands to directly control artificial actuators, such as limb prostheses. Previous real-time methods applied to decoding behavioral commands from the activity of populations of neurons have generally relied upon linear models of neural tuning and were limited in the way they used the abundant statistical information contained in the movement profiles of motor tasks. Here, we propose an n-th order unscented Kalman filter which implements two key features: (1) use of a non-linear (quadratic) model of neural tuning which describes neural activity significantly better than commonly-used linear tuning models, and (2) augmentation of the movement state variables with a history of n-1 recent states, which improves prediction of the desired command even before incorporating neural activity information and allows the tuning model to capture relationships between neural activity and movement at multiple time offsets simultaneously. This new filter was tested in BMI experiments in which rhesus monkeys used their cortical activity, recorded through chronically implanted multielectrode arrays, to directly control computer cursors. The 10th order unscented Kalman filter outperformed the standard Kalman filter and the Wiener filter in both off-line reconstruction of movement trajectories and real-time, closed-loop BMI operation

    Rule-based definition of muscle bundles in patient-specific models of the left atrium

    Get PDF
    Atrial fibrillation (AF) is the most common arrhythmia encountered clinically, and as the population ages, its prevalence is increasing. Although the CHA2DS2−VASc score is the most used risk-stratification system for stroke risk in AF, it lacks personalization. Patient-specific computer models of the atria can facilitate personalized risk assessment and treatment planning. However, a challenge faced in creating such models is the complexity of the atrial muscle arrangement and its influence on the atrial fiber architecture. This work proposes a semi-automated rule-based algorithm to generate the local fiber orientation in the left atrium (LA). We use the solutions of several harmonic equations to decompose the LA anatomy into subregions. Solution gradients define a two-layer fiber field in each subregion. The robustness of our approach is demonstrated by recreating the fiber orientation on nine models of the LA obtained from AF patients who underwent WATCHMAN device implantation. This cohort of patients encompasses a variety of morphology variants of the left atrium, both in terms of the left atrial appendages (LAAs) and the number of pulmonary veins (PVs). We test the fiber construction algorithm by performing electrophysiology (EP) simulations. Furthermore, this study is the first to compare its results with other rule-based algorithms for the LA fiber architecture definition available in the literature. This analysis suggests that a multi-layer fiber architecture is important to capture complex electrical activation patterns. A notable advantage of our approach is the ability to reconstruct the main LA fiber bundles in a variety of morphologies while solving for a small number of harmonic fields, leading to a comparatively straightforward and reproducible approach

    Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates

    Get PDF
    Reaching and grasping in primates depend on the coordination of neural activity in large frontoparietal ensembles. Here we demonstrate that primates can learn to reach and grasp virtual objects by controlling a robot arm through a closed-loop brain–machine interface (BMIc) that uses multiple mathematical models to extract several motor parameters (i.e., hand position, velocity, gripping force, and the EMGs of multiple arm muscles) from the electrical activity of frontoparietal neuronal ensembles. As single neurons typically contribute to the encoding of several motor parameters, we observed that high BMIc accuracy required recording from large neuronal ensembles. Continuous BMIc operation by monkeys led to significant improvements in both model predictions and behavioral performance. Using visual feedback, monkeys succeeded in producing robot reach-and-grasp movements even when their arms did not move. Learning to operate the BMIc was paralleled by functional reorganization in multiple cortical areas, suggesting that the dynamic properties of the BMIc were incorporated into motor and sensory cortical representations
    corecore