66 research outputs found

    Electric-field control of a hydrogenic donor's spin in a semiconductor

    Full text link
    An AC electric field applied to a donor-bound electron in a semiconductor modulates the orbital character of its wave function, which affects the electron's spin dynamics via the spin-orbit interaction. Numerical calculations of the spin dynamics of a hydrogenic donor (Si) embedded in GaAs, using a real-space multi-band k.p formalism, show the high symmetry of the hydrogenic donor state results in strongly nonlinear dependences of the electronic g tensor on applied fields. A nontrivial consequence is that the most rapid Rabi oscillations occur for electric fields modulated at a subharmonic of the Larmor frequency

    Optical Dielectric Functions of III-V Semiconductors in Wurtzite Phase

    Full text link
    Optical properties of semiconductors can exhibit strong polarization dependence due to crystalline anisotropy. A number of recent experiments have shown that the photoluminescence intensity in free standing nanowires is polarization dependent. One contribution to this effect is the anisotropy of the dielectric function due to the fact that most nanowires crystalize in the wurtzite form. While little is known experimentally about the band structures wurtzite phase III-V semiconductors, we have previously predicted the bulk band structure of nine III-V semiconductors in wurtzite phase.Here, we predict the frequency dependent dielectric functions for nine non-Nitride wurtzite phase III-V semiconductors (AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb). Their complex dielectric functions are calculated in the dipole approximation by evaluating the momentum matrix elements on a dense grid of special k-points using empirical pseudopotential wave functions. Corrections to the momentum matrix elements accounting for the missing core states are made using a scaling factor which is determined by using the optical sum rules on the calculated dielectric functions for the zincblende polytypes. The dielectric function is calculated for polarizations perpendicular and parallel to the c-axis of the crystal

    Electric-field Manipulation of the Lande' g Tensor of Holes in In0.5Ga0.5As/GaAs Self-assembled Quantum Dots

    Full text link
    The effect of an electric field on spin precession in In0.5Ga0.5As/GaAs self-assembled quantum dots is calculated using multiband real-space envelope-function theory. The dependence of the Lande' g tensor on electric fields should permit high-frequency g tensor modulation resonance, as well as direct, nonresonant electric-field control of the hole spin. Subharmonic resonances have also been found in g tensor modulation resonance of the holes, due to the strong quadratic dependence of components of the hole g tensor on the electric field.Comment: 4 pages, 2 figure

    Predicted band structures of III-V semiconductors in wurtzite phase

    Full text link
    While non-nitride III-V semiconductors typically have a zincblende structure, they may also form wurtzite crystals under pressure or when grown as nanowhiskers. This makes electronic structure calculation difficult since the band structures of wurtzite III-V semiconductors are poorly characterized. We have calculated the electronic band structure for nine III-V semiconductors in the wurtzite phase using transferable empirical pseudopotentials including spin-orbit coupling. We find that all the materials have direct gaps. Our results differ significantly from earlier {\it ab initio} calculations, and where experimental results are available (InP, InAs and GaAs) our calculated band gaps are in good agreement. We tabulate energies, effective masses, and linear and cubic Dresselhaus zero-field spin-splitting coefficients for the zone-center states. The large zero-field spin-splitting coefficients we find may lead to new functionalities for designing devices that manipulate spin degrees of freedom

    Fine structure splitting cancellation in highly asymmetric InAs/InP droplet epitaxy quantum dots

    Full text link
    We find the single exciton's fine structure splitting (FSS), which splits its degenerate ground state manifold into singlets, nearly vanishes in highly asymmetric quantum dots due to the cancellation of splitting effects with markedly different origin. The dots simulated are those that emerge on top of etch pits through the droplet epitaxy growth process; these etch pit dots break square (C4vC_{4v}) spatial symmetry, which has been previously associated with small FSS. Configuration interaction calculations predict a vanishing FSS at a specific finite etch pit displacement from the center of the dot, for a structure far from square symmetry. We thus predict that highly asymmetric quantum dots may still display negligible fine structure splitting, providing new avenues for high-fidelity generation of indistinguishable, polarization entangled photon pairs on demand

    Electronic structure of strained InP/GaInP quantum dots

    Full text link
    We calculate the electronic structure of nm scale InP islands embedded in Ga0.51In0.49PGa_{0.51}In_{0.49}P. The calculations are done in the envelope approximation and include the effects of strain, piezoelectric polarization, and mixing among 6 valence bands. The electrons are confined within the entire island, while the holes are confined to strain induced pockets. One pocket forms a ring at the bottom of the island near the substrate interface, while the other is above the island in the GaInP. The two sets of hole states are decoupled. Polarization dependent dipole matrix elements are calculated for both types of hole states.Comment: Typographical error corrected in strain Hamiltonia

    Mean Field Phase Diagram of SU(2)xSU(2) Lattice Higgs-Yukawa Model at Finite Lambda

    Full text link
    The phase diagram of an SU(2)_L x SU(2)_R lattice Higgs-Yukawa model with finite lambda is constructed using mean field theory. The phase diagram bears a superficial resemblance to that for infinite lambda, however as lambda is decreased the paramagnetic region shrinks in size. For small lambda the phase transitions remain second order, and no new first order transitions are seen.Comment: 9 pages, 3 postscript figures, RevTex. To appear in PR
    • …
    corecore