Optical properties of semiconductors can exhibit strong polarization
dependence due to crystalline anisotropy. A number of recent experiments have
shown that the photoluminescence intensity in free standing nanowires is
polarization dependent. One contribution to this effect is the anisotropy of
the dielectric function due to the fact that most nanowires crystalize in the
wurtzite form. While little is known experimentally about the band structures
wurtzite phase III-V semiconductors, we have previously predicted the bulk band
structure of nine III-V semiconductors in wurtzite phase.Here, we predict the
frequency dependent dielectric functions for nine non-Nitride wurtzite phase
III-V semiconductors (AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb).
Their complex dielectric functions are calculated in the dipole approximation
by evaluating the momentum matrix elements on a dense grid of special k-points
using empirical pseudopotential wave functions. Corrections to the momentum
matrix elements accounting for the missing core states are made using a scaling
factor which is determined by using the optical sum rules on the calculated
dielectric functions for the zincblende polytypes. The dielectric function is
calculated for polarizations perpendicular and parallel to the c-axis of the
crystal