20,002 research outputs found
Dynamic magnetic reconnection in three space dimensions: Fan current solutions
The problem of incompressible, nonlinear magnetic reconnection in three-dimensional "open" geometries is considered. An analytic treatment shows that dynamic "fan current" reconnection may be driven by superposing long wavelength, finite amplitude, plane wave disturbances onto three-dimensional magnetic X-points. The nonlinear reconnection of the field is preceded by an advection phase in which magnetic shear waves drive large currents as they localize in the vicinity of the magnetic null. Analytic arguments, reinforced by detailed simulations, show that the ohmic dissipation rate can be independent of the plasma resistivity if the merging is suitably driven
Exact solutions for steady-state, planar, magnetic reconnection in an incompressible viscous plasma
The exact planar reconnection analysis of Craig and Henton [Astrophys. J. 450, 280 (1995)] is extended to include the finite viscosity of the fluid and the presence of nonplanar components in the magnetic and velocity fields. It is shown that fast reconnection can be achieved for sufficiently small values of the kinematic viscosity. In particular, the dissipation rate is sustained by the strong amplification of planar magnetic field components advected toward the neutral point. By contrast, nonplanar field components are advected without amplification and so dissipate energy at the slow SweetâParker rate
Hyper-Rayleigh scattering in centrosymmetric systems
Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E13, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E12M1 and E12E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E12E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties
Health Risks, Past Usage, and Intention to Use Weight Loss Products in Normal Weight Women with High and Low Body Dysphoria
Objective: There are many health risks involved with the use of weight loss products by normal weight women. The mass media may compound this problem through the promotion of weight loss products and a thin body size. This study tested women\u27s perceptions of different weight loss product ads to determine if body dysphoria (i.e., an over concern with body size and shape in normal weight people) was associated with risk beliefs, past behaviors, and intention toward using weight loss products.
Method: Normal weight women (age range = 18-41 yr), who were classified as either high (n=45) or low (n=43) on a measure of body dysphoria, rated different weight loss products according to their perception of health risks, past behavior, and their intention to consume the products. These products were a dietary fat substitute (olestra), a prescription obesity medication (sibutramine), and an over-the-counter appetite suppressant (phenylpropanolamine).
Results: High body dysphoric women reported higher intentions to use the products as well as increased prior use of two of the three weight loss products. High body dysphoric women did not believe that these weight loss products were harmless. They recognized potential health risks associated with using such products, but nonetheless, expressed intention to use these weight loss products at a higher frequency. Also, several variables related to body image were found to effectively discriminate normal weight women at risk for abusing weight loss products.
Discussion: This study found that women who do not need to lose weight but have significant body image concerns were willing to use potentially harmful weight loss products despite the knowledge that such products might pose significant health risks. Techniques utilized by advertising regulatory agencies such as warning labels did not have a strong deterrent effect for stated intentions to use the products. Implications of these findings for public health policy issues were discussed
Embryo impacts and gas giant mergers II: Diversity of Hot Jupiters' internal structure
We consider the origin of compact, short-period, Jupiter-mass planets. We
propose that their diverse structure is caused by giant impacts of embryos and
super-Earths or mergers with other gas giants during the formation and
evolution of these hot Jupiters. Through a series of numerical simulations, we
show that typical head-on collisions generally lead to total coalescence of
impinging gas giants. Although extremely energetic collisions can disintegrate
the envelope of gas giants, these events seldom occur. During oblique and
moderately energetic collisions, the merger products retain higher fraction of
the colliders' cores than their envelopes. They can also deposit considerable
amount of spin angular momentum to the gas giants and desynchronize their spins
from their orbital mean motion. We find that the oblateness of gas giants can
be used to infer the impact history. Subsequent dissipation of stellar tide
inside the planets' envelope can lead to runaway inflation and potentially a
substantial loss of gas through Roche-lobe overflow. The impact of super-Earths
on parabolic orbits can also enlarge gas giant planets' envelope and elevates
their tidal dissipation rate over 100 Myr time scale. Since giant
impacts occur stochastically with a range of impactor sizes and energies, their
diverse outcomes may account for the dispersion in the mass-radius relationship
of hot Jupiters.Comment: 19 pages, 7 figures, 7 tables. Accepted for publication in MNRA
Interferometers as Probes of Planckian Quantum Geometry
A theory of position of massive bodies is proposed that results in an
observable quantum behavior of geometry at the Planck scale, . Departures
from classical world lines in flat spacetime are described by Planckian
noncommuting operators for position in different directions, as defined by
interactions with null waves. The resulting evolution of position wavefunctions
in two dimensions displays a new kind of directionally-coherent quantum noise
of transverse position. The amplitude of the effect in physical units is
predicted with no parameters, by equating the number of degrees of freedom of
position wavefunctions on a 2D spacelike surface with the entropy density of a
black hole event horizon of the same area. In a region of size , the effect
resembles spatially and directionally coherent random transverse shear
deformations on timescale with typical amplitude . This quantum-geometrical "holographic noise" in position is not
describable as fluctuations of a quantized metric, or as any kind of
fluctuation, dispersion or propagation effect in quantum fields. In a Michelson
interferometer the effect appears as noise that resembles a random Planckian
walk of the beamsplitter for durations up to the light crossing time. Signal
spectra and correlation functions in interferometers are derived, and predicted
to be comparable with the sensitivities of current and planned experiments. It
is proposed that nearly co-located Michelson interferometers of laboratory
scale, cross-correlated at high frequency, can test the Planckian noise
prediction with current technology.Comment: 23 pages, 6 figures, Latex. To appear in Physical Review
The ASCA Spectrum of the Vela Pulsar Jet
ROSAT observations of the Vela pulsar and its surroundings revealed a
collimated X-ray feature almost 45' in length (Markwardt & Ogelman 1995),
interpreted as the signature ``cocoon'' of a one-sided jet from the Vela
pulsar. We report on a new ASCA observation of the Vela pulsar jet at its head,
the point where the jet is believed to interact with the supernova remnant. The
head is clearly detected, and its X-ray spectrum is remarkably similar to the
surrounding supernova remnant spectrum, extending to X-ray energies of at least
7 keV. A ROSAT+ASCA spectrum can be fit by two-component emission models but
not standard one-component models. The lower energy component is thermal and
has a temperature of 0.29+/-0.03 keV (1 sigma); the higher energy component can
be fit by either a thermal component of temperature ~4 keV or a power law with
photon index ~2.0. Compared to the ROSAT-only results, the mechanical
properties of the jet and its cocoon do not change much. If the observed
spectrum is that of a hot jet cocoon, then the speed of the jet is at least 800
km s^-1, depending on the angle of inclination. The mechanical power driving
the jet is >10^36 erg s^-1, and the mass flow rate at the head is > 10^-6 M_sun
yr^-1. We conclude that the jet must be entraining material all along its
length in order to generate such a large mass flow rate. We also explore the
possibility that the cocoon emission is synchrotron radiation instead of
thermal.Comment: 12 pages, LaTeX in AAS v4.0 preprint style, two PS figures, accepted
for publication in the ApJ Letter
CO Line Emission and Absorption from the HL Tau Disk: Where is all the dust?
We present high-resolution infrared spectra of HL Tau, a heavily embedded
young star. The spectra exhibit broad emission lines of hot CO gas as well as
narrow absorption lines of cold CO gas. The column density for this cooler
material (7.5+/-0.2 x 10^18 cm-2) indicates a large column of absorbing gas
along the line of sight. In dense interstellar clouds, this column density of
CO gas is associated with Av~52 magnitudes. However, the extinction toward this
source (Av~23) suggests that there is less dust along the line of sight than
inferred from the CO absorption data. We discuss three possibilities for the
apparent paucity of dust along the line of sight through the flared disk: 1)
the dust extinction has been underestimated due to differences in circumstellar
grain properties, such as grain agglomeration; 2) the effect of scattering has
been underestimated and the actual extinction is much higher; or (3) the line
of sight through the disk is probing a gas-rich, dust-depleted region, possibly
due to the stratification of gas and dust in a pre-planetary disk.Comment: To be published in The Astrophysical Journa
- âŠ