20,002 research outputs found

    Dynamic magnetic reconnection in three space dimensions: Fan current solutions

    Get PDF
    The problem of incompressible, nonlinear magnetic reconnection in three-dimensional "open" geometries is considered. An analytic treatment shows that dynamic "fan current" reconnection may be driven by superposing long wavelength, finite amplitude, plane wave disturbances onto three-dimensional magnetic X-points. The nonlinear reconnection of the field is preceded by an advection phase in which magnetic shear waves drive large currents as they localize in the vicinity of the magnetic null. Analytic arguments, reinforced by detailed simulations, show that the ohmic dissipation rate can be independent of the plasma resistivity if the merging is suitably driven

    Exact solutions for steady-state, planar, magnetic reconnection in an incompressible viscous plasma

    Get PDF
    The exact planar reconnection analysis of Craig and Henton [Astrophys. J. 450, 280 (1995)] is extended to include the finite viscosity of the fluid and the presence of nonplanar components in the magnetic and velocity fields. It is shown that fast reconnection can be achieved for sufficiently small values of the kinematic viscosity. In particular, the dissipation rate is sustained by the strong amplification of planar magnetic field components advected toward the neutral point. By contrast, nonplanar field components are advected without amplification and so dissipate energy at the slow Sweet–Parker rate

    Hyper-Rayleigh scattering in centrosymmetric systems

    Get PDF
    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E13, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E12M1 and E12E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E12E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties

    Health Risks, Past Usage, and Intention to Use Weight Loss Products in Normal Weight Women with High and Low Body Dysphoria

    Get PDF
    Objective: There are many health risks involved with the use of weight loss products by normal weight women. The mass media may compound this problem through the promotion of weight loss products and a thin body size. This study tested women\u27s perceptions of different weight loss product ads to determine if body dysphoria (i.e., an over concern with body size and shape in normal weight people) was associated with risk beliefs, past behaviors, and intention toward using weight loss products. Method: Normal weight women (age range = 18-41 yr), who were classified as either high (n=45) or low (n=43) on a measure of body dysphoria, rated different weight loss products according to their perception of health risks, past behavior, and their intention to consume the products. These products were a dietary fat substitute (olestra), a prescription obesity medication (sibutramine), and an over-the-counter appetite suppressant (phenylpropanolamine). Results: High body dysphoric women reported higher intentions to use the products as well as increased prior use of two of the three weight loss products. High body dysphoric women did not believe that these weight loss products were harmless. They recognized potential health risks associated with using such products, but nonetheless, expressed intention to use these weight loss products at a higher frequency. Also, several variables related to body image were found to effectively discriminate normal weight women at risk for abusing weight loss products. Discussion: This study found that women who do not need to lose weight but have significant body image concerns were willing to use potentially harmful weight loss products despite the knowledge that such products might pose significant health risks. Techniques utilized by advertising regulatory agencies such as warning labels did not have a strong deterrent effect for stated intentions to use the products. Implications of these findings for public health policy issues were discussed

    Embryo impacts and gas giant mergers II: Diversity of Hot Jupiters' internal structure

    Full text link
    We consider the origin of compact, short-period, Jupiter-mass planets. We propose that their diverse structure is caused by giant impacts of embryos and super-Earths or mergers with other gas giants during the formation and evolution of these hot Jupiters. Through a series of numerical simulations, we show that typical head-on collisions generally lead to total coalescence of impinging gas giants. Although extremely energetic collisions can disintegrate the envelope of gas giants, these events seldom occur. During oblique and moderately energetic collisions, the merger products retain higher fraction of the colliders' cores than their envelopes. They can also deposit considerable amount of spin angular momentum to the gas giants and desynchronize their spins from their orbital mean motion. We find that the oblateness of gas giants can be used to infer the impact history. Subsequent dissipation of stellar tide inside the planets' envelope can lead to runaway inflation and potentially a substantial loss of gas through Roche-lobe overflow. The impact of super-Earths on parabolic orbits can also enlarge gas giant planets' envelope and elevates their tidal dissipation rate over ∌\sim 100 Myr time scale. Since giant impacts occur stochastically with a range of impactor sizes and energies, their diverse outcomes may account for the dispersion in the mass-radius relationship of hot Jupiters.Comment: 19 pages, 7 figures, 7 tables. Accepted for publication in MNRA

    Interferometers as Probes of Planckian Quantum Geometry

    Full text link
    A theory of position of massive bodies is proposed that results in an observable quantum behavior of geometry at the Planck scale, tPt_P. Departures from classical world lines in flat spacetime are described by Planckian noncommuting operators for position in different directions, as defined by interactions with null waves. The resulting evolution of position wavefunctions in two dimensions displays a new kind of directionally-coherent quantum noise of transverse position. The amplitude of the effect in physical units is predicted with no parameters, by equating the number of degrees of freedom of position wavefunctions on a 2D spacelike surface with the entropy density of a black hole event horizon of the same area. In a region of size LL, the effect resembles spatially and directionally coherent random transverse shear deformations on timescale ≈L/c\approx L/c with typical amplitude ≈ctPL\approx \sqrt{ct_PL}. This quantum-geometrical "holographic noise" in position is not describable as fluctuations of a quantized metric, or as any kind of fluctuation, dispersion or propagation effect in quantum fields. In a Michelson interferometer the effect appears as noise that resembles a random Planckian walk of the beamsplitter for durations up to the light crossing time. Signal spectra and correlation functions in interferometers are derived, and predicted to be comparable with the sensitivities of current and planned experiments. It is proposed that nearly co-located Michelson interferometers of laboratory scale, cross-correlated at high frequency, can test the Planckian noise prediction with current technology.Comment: 23 pages, 6 figures, Latex. To appear in Physical Review

    The ASCA Spectrum of the Vela Pulsar Jet

    Get PDF
    ROSAT observations of the Vela pulsar and its surroundings revealed a collimated X-ray feature almost 45' in length (Markwardt & Ogelman 1995), interpreted as the signature ``cocoon'' of a one-sided jet from the Vela pulsar. We report on a new ASCA observation of the Vela pulsar jet at its head, the point where the jet is believed to interact with the supernova remnant. The head is clearly detected, and its X-ray spectrum is remarkably similar to the surrounding supernova remnant spectrum, extending to X-ray energies of at least 7 keV. A ROSAT+ASCA spectrum can be fit by two-component emission models but not standard one-component models. The lower energy component is thermal and has a temperature of 0.29+/-0.03 keV (1 sigma); the higher energy component can be fit by either a thermal component of temperature ~4 keV or a power law with photon index ~2.0. Compared to the ROSAT-only results, the mechanical properties of the jet and its cocoon do not change much. If the observed spectrum is that of a hot jet cocoon, then the speed of the jet is at least 800 km s^-1, depending on the angle of inclination. The mechanical power driving the jet is >10^36 erg s^-1, and the mass flow rate at the head is > 10^-6 M_sun yr^-1. We conclude that the jet must be entraining material all along its length in order to generate such a large mass flow rate. We also explore the possibility that the cocoon emission is synchrotron radiation instead of thermal.Comment: 12 pages, LaTeX in AAS v4.0 preprint style, two PS figures, accepted for publication in the ApJ Letter

    CO Line Emission and Absorption from the HL Tau Disk: Where is all the dust?

    Full text link
    We present high-resolution infrared spectra of HL Tau, a heavily embedded young star. The spectra exhibit broad emission lines of hot CO gas as well as narrow absorption lines of cold CO gas. The column density for this cooler material (7.5+/-0.2 x 10^18 cm-2) indicates a large column of absorbing gas along the line of sight. In dense interstellar clouds, this column density of CO gas is associated with Av~52 magnitudes. However, the extinction toward this source (Av~23) suggests that there is less dust along the line of sight than inferred from the CO absorption data. We discuss three possibilities for the apparent paucity of dust along the line of sight through the flared disk: 1) the dust extinction has been underestimated due to differences in circumstellar grain properties, such as grain agglomeration; 2) the effect of scattering has been underestimated and the actual extinction is much higher; or (3) the line of sight through the disk is probing a gas-rich, dust-depleted region, possibly due to the stratification of gas and dust in a pre-planetary disk.Comment: To be published in The Astrophysical Journa
    • 

    corecore