2,867 research outputs found

    Simulation of factors impeding water quality trading market performance

    Get PDF
    Over the past several decades, market-based approaches to natural resource management have received increased attention as a means to cost-effectively achieve environmental quality goals. Following on what has been hailed a success for reducing air pollution, water quality trading (WQT) has more recently been seen as the next great opportunity for reducing water pollution, especially for nutrient loading. Numerous trading programs have been pilot tested and/or adopted in states throughout the nation, with more than 70 programs now in operation (Breetz et al., 2004). WQT would allow multiple contributors to surface water degradation to determine how best to meet an overarching collective goal related to pollution reduction. WQT takes advantage of differences in pollution abatement costs. In the case of point/nonpoint source trading, such as between wastewater treatment plants (WWTPs) and agricultural producers, it is often the agricultural producers who can achieve a given level of nutrient reduction at less cost through their adoption of various best management practices that reduce sedimentation and nutrient loading to surface waters. Trading would allow WWTPs to purchase “credits” generated by producers who reduced their pollution loading to achieve an equivalent level of reduction as might be required by a regulatory discharge permit at a lower overall cost. While there is substantial evidence that nonpoint sources have lower nutrient reduction costs than point sources, experience with WQT reveals a common theme: little or no trading activity. The success of WQT seems, in part, to depend on the structure of the market created to bring buyers and sellers together to transact exchanges. These outcomes suggest the presence of obstacles to trading that were not recognized in the design of existing programs. To examine the ways that various market imperfections may impact the performance of a WQT market, an agent-based model was constructed which simulated a hypothetical point-nonpoint market. In particular, the market was modeled using a variant of the sequential, bilateral trading algorithm proposed by Atkinson and Tietenberg (1991). Our proposed paper first presents an overview of the simulation modeling technique and then analyzes the effects of two prominent market impediments identified in the WQT literature: information levels and trading ratios. Information levels refer to buyers’ and sellers’ knowledge of each others’ bid prices. A frictionless WQT market would be one where all of the potential buyers (i.e., point sources) would know all of the sellers’ (i.e., nonpoint sources) offer prices and vice versa. In this full information environment, we can expect that trades would be consummated in the order of their gains. That is, first buyers and sellers to be paired together for trading would be the buyers with the highest offer prices and the sellers with the lowest bid prices. Successive trades will have successively smaller gains until the gap between bid and offer prices reaches zero. This is the textbook Walrasian market and would closely approximate a double auction institution, where all buyers and sellers submit their offers and bids, which are then sorted and matched by a centralized market manager. While the full information scenario serves as a useful benchmark, most existing WQT markets are decentralized in nature, so that limited information causes traders to be matched in a less efficient sequence. A variety of information levels are possible. One side of the market may have more information than the other (limited information) or neither side having any knowledge of the other side’s bid or offer prices (low information). Each of these scenarios leads to a different sequencing of trades. This paper analyzes the effect of different information levels on market performance. Market performance is measured in terms of cost savings, the number of credits traded, and the average reduction costs under different information scenarios. Trading ratios are a common component of many existing WQT programs. A typical trading ratio of 2:1 requires a nonpoint source to reduce two pounds of expected nutrient loading in order to receive one pound of trading credit. These ratios serve as a “safety factor” and are incorporated to account for the uncertainty in the measurement and monitoring of nonpoint source loading. Because nonpoint traders must reduce loading by 2 pounds for every 1 pound emitted by point source traders, there will be a net reduction of 1 pound of expected loading for each trade. So, while inhibiting some trades from ever occurring, trading ratios also have the potential to improve water quality beyond trading with a 1:1 trading ratio. This paper examines these tradeoffs in terms of effects on market performance and then describes procedures that can be used to characterize an optimal trading ratio if one exists. Because WQT programs, by nature, involve complex interactions between economics and the biophysical world, accurately simulating a real-world WQT market requires at minimum a basic understanding of the types of data that watershed models can provide. This paper concludes by briefly discussing data requirements, points of consideration, and integrative techniques used in the simulation of WQT in real-world watersheds.water quality trading, market based, trading ratio, information levels, point source, nonpoint source, simulation, Environmental Economics and Policy, Resource /Energy Economics and Policy,

    Choice Experiments to Assess Farmers' Willingness to Participate in a Water Quality Trading Market

    Get PDF
    Interest has grown in Water Quality Trading (WQT) as a means to achieve water quality goals, with more than 70 such programs now in operation in the United States. Substantial evidence exists that nonpoint sources can reduce nutrient loading at a much lower cost than point sources, implying the existence of gains from trade. Despite the potential gains, however, the most commonly noted feature of existing WQT markets is low trading volume, with many markets resulting in zero trades. This paper evaluates one explanation for the lack of participation from agricultural nonpoint sources. We test for and quantify the intangible costs that may deter farmers from trading even if the monetary benefits from doing so outweigh the observable out-of-pocket costs. We do so by designing and implementing a series of choice experiments to elicit WQT trading behavior of Great Plains crop producers in different situations. Attributes of the choice experiment included market rules and features (e.g., application time and effort, penalties for violations, means of monitoring compliance) that may affect farmers willingness to trade. The choice experiments were conducted with a total of 135 producers at four locations in the state of Kansas between August 2006 and January 2007. A Random Parameters Logit model is appropriate to analyze the resulting data, revealing diversity in the way that the attributes affect farmers choices.Resource /Energy Economics and Policy,

    Possible detection of singly-ionized oxygen in the Type Ia SN 2010kg

    Get PDF
    We present direct spectroscopic modeling of 11 high-S/N observed spectra of the Type Ia SN 2010kg, taken between -10 and +5 days with respect to B-maximum. The synthetic spectra, calculated with the SYN++ code, span the range between 4100 and 8500 \r{A}. Our results are in good agreement with previous findings for other Type Ia SNe. Most of the spectral features are formed at or close to the photosphere, but some ions, like Fe II and Mg II, also form features at ~2000 - 5000 km s−1^{-1} above the photosphere. The well-known high-velocity features of the Ca II IR-triplet as well as Si II λ\lambda6355 are also detected. The single absorption feature at ~4400 \r{A}, which usually has been identified as due to Si III, is poorly fit with Si III in SN 2010kg. We find that the fit can be improved by assuming that this feature is due to either C III or O II, located in the outermost part of the ejecta, ~4000 - 5000 km s−1^{-1} above the photosphere. Since the presence of C III is unlikely, because of the lack of the necessary excitation/ionization conditions in the outer ejecta, we identify this feature as due to O II. The simultaneous presence of O I and O II is in good agreement with the optical depth calculations and the temperature distribution in the ejecta of SN 2010kg. This could be the first identification of singly ionized oxygen in a Type Ia SN atmosphere.Comment: Submitted to MNRA

    Geomorphology of icy debris fans: Delivery of ice and sediment to valley glaciers decoupled from icecaps

    Get PDF
    The pace and volume of mass flow processes contributing ice and sediment to icy debris fans (IDFs) were documented at sites in Alaska and New Zealand by integrating field observations, drone and time-lapse imagery, ground penetrating radar, and terrestrial laser scanning. Largely unstudied, IDFs are supraglacial landforms at the mouths of bedrock catchments between valley glaciers and icecaps. Time-lapse imagery recorded 300–2300 events reaching 15 fans during intervals from nine months to two years. Field observations noted hundreds of deposits trapped within catchments weekly that were later remobilized onto fans. Deposits were mapped on images taken three to four times per day. Most events were ice avalanches (58%–100%). Slush avalanches and/or flows were common in spring and fall (0%–65%). Icy debris flows were \u3c5% of the events, observed only at sites with geomorphically complex catchments. Rockfalls were common within catchments; few directly reached a fan. Site selection provided a spectrum of catchment relationships between icecaps and fans. The largest most active fans occur below hanging glaciers or short chutes between the icecap and glacier and were dominated by ice avalanches, slush avalanches, and slush flows. Larger, complex catchments allowed temporary storage of ice and sediment that were later remobilized into ice and slush avalanches and debris flows. Unlike alluvial settings where larger fans are associated with larger catchments, there are variable relationships between IDF area and catchment area. Exceptionally active and dynamic compared to alluvial fans, the studied IDFs exhibited annual resurfacing rates of 300%–\u3e4000%. Annual contributions by mass flows ranged from 133,200 to 5,200,000 m3, representing 3%–56% of fan volume. Although ablation occurred, mainly during summers, significant ice transfer occurred through fan subsurface areas to adjacent valley glaciers. Icy debris fans annually contributed \u3c1%–~24% of the mass of adjacent valley glaciers. Small glaciers (e.g., McCarthy Glacier, Alaska) showed minor thinning (\u3c1 m/yr) compared to larger glaciers (e.g., La Perouse, Douglas, and Mueller Glaciers, New Zealand) that lost \u3e5–10 m/yr over the hundreds of meters of valley glacier adjacent to the IDFs studied. Some IDFs lengthened in response to thinning of valley glaciers. Icy debris fans supplied significant ice and sediment to valley glaciers, slowing the rate of deglaciation. Results of this study have implications toward managing hazards and predicting glacial mass balance in alpine regions. For example, having quantitative information about the role of ice contribution from IDFs to valley glaciers may result in forecasting a lower rate of deglaciation than traditionally recognized for some glaciers decoupled from icecaps

    Assessing Ground Penetrating Radar’s Ability to Image Subsurface Characteristics of Icy Debris Fans in Alaska and New Zealand

    Get PDF
    Icy debris fans have recently been described as fan shaped depositional landforms associated with (or formed during) deglaciation, however, the subsurface characteristics remain essentially undocumented. We used ground penetrating radar (GPR) to non-invasively investigate the subsurface characteristics of icy debris fans (IDFs) at McCarthy Glacier, Alaska, USA and at La Perouse Glacier, South Island of New Zealand. IDFs are largely unexplored paraglacial landforms in deglaciating alpine regions at the mouths of bedrock catchments between valley glaciers and icecaps. IDFs receive deposits of mainly ice and minor lithic material through different mass-flow processes, chiefly ice avalanche and to a lesser extent debris flow, slushflow, and rockfall. We report here on the GPR signal velocity observed from 15 different wide-angle reflection/refraction (WARR) soundings on the IDFs and on the McCarthy Glacier; the effect of GPR antenna orientation relative to subsurface reflections; the effect of spreading direction of the WARR soundings relative to topographic contour; observed differences between transverse electric (TE) and transverse magnetic (TM) antenna polarization; and a GPR profile extending from the McCarthy Glacier onto an IDF. Evaluation of the WARR soundings indicates that the IDF deposits have a GPR signal velocity that is similar to the underlying glacier, and that the antenna polarization and orientation did not prevent identification of GPR reflections. The GPR profile on the McCarthy Glacier indicates that the shallowest material is layered, decreases in thickness down fan, and has evidence of brittle failure planes (crevasses). The GPR profile and WARR soundings collected in 2013 indicate that the thickness of the McCarthy Glacier is 82 m in the approximate middle of the cirque and that the IDF deposits transition with depth into flowing glacial ice

    Assessing Ground Penetrating Radar\u27s Ability to Image Subsurface Characteristics of Icy Debris Fans in Alaska and New Zealand

    Get PDF
    Icy debris fans have recently been described as fan shaped depositional landforms associated with (or formed during) deglaciation, however, the subsurface characteristics remain essentially undocumented. We used ground penetrating radar (GPR) to non-invasively investigate the subsurface characteristics of icy debris fans (IDFs) at McCarthy Glacier, Alaska, USA and at La Perouse Glacier, South Island of New Zealand. IDFs are largely unexplored paraglacial landforms in deglaciating alpine regions at the mouths of bedrock catchments between valley glaciers and icecaps. IDFs receive deposits of mainly ice and minor lithic material through different mass-flow processes, chiefly ice avalanche and to a lesser extent debris flow, slushflow, and rockfall. We report here on the GPR signal velocity observed from 15 different wide-angle reflection/refraction (WARR) soundings on the IDFs and on the McCarthy Glacier; the effect of GPR antenna orientation relative to subsurface reflections; the effect of spreading direction of the WARR soundings relative to topographic contour; observed differences between transverse electric (TE) and transverse magnetic (TM) antenna polarization; and a GPR profile extending from the McCarthy Glacier onto an IDF. Evaluation of the WARR soundings indicates that the IDF deposits have a GPR signal velocity that is similar to the underlying glacier, and that the antenna polarization and orientation did not prevent identification of GPR reflections. The GPR profile on the McCarthy Glacier indicates that the shallowest material is layered, decreases in thickness down fan, and has evidence of brittle failure planes (crevasses). The GPR profile and WARR soundings collected in 2013 indicate that the thickness of the McCarthy Glacier is 82 m in the approximate middle of the cirque and that the IDF deposits transition with depth into flowing glacial ice
    • 

    corecore