19,987 research outputs found

    A fresh perspective on canonical extensions for bounded lattices

    Full text link
    This paper presents a novel treatment of the canonical extension of a bounded lattice, in the spirit of thetheory of natural dualities. At the level of objects, this can be achieved by exploiting the topological representation due to M. Ploscica, and the canonical extension can be obtained in the same manner as can be done in the distributive case by exploiting Priestley duality. To encompass both objects and morphismsthe Ploscica representation is replaced by a duality due to Allwein and Hartonas, recast in the style of Ploscica's paper. This leads to a construction of canonical extension valid for all bounded lattices,which is shown to be functorial, with the property that the canonical extension functor decomposes asthe composite of two functors, each of which acts on morphisms by composition, in the manner of hom-functors

    Combustor liner construction

    Get PDF
    A combustor liner is fabricated from a plurality of individual segments each containing counter/parallel Finwall material and are arranged circumferentially and axially to define the combustion zone. Each segment is supported by a hook and ring construction to an opened lattice frame with sufficient tolerance between the hook and ring to permit thermal expansion with a minimum of induced stresses

    Effect of time delay on feedback control of a flashing ratchet

    Full text link
    It was recently shown that the use of feedback control can improve the performance of a flashing ratchet. We investigate the effect of a time delay in the implementation of feedback control in a closed-loop collective flashing ratchet, using Langevin dynamics simulations. Surprisingly, for a large ensemble, a well-chosen delay time improves the ratchet performance by allowing the system to synchronize into a quasi-periodic stable mode of oscillation that reproduces the optimal average velocity for a periodically flashing ratchet. For a small ensemble, on the other hand, finite delay times significantly reduce the benefit of feedback control for the time-averaged velocity, because the relevance of information decays on a time scale set by the diffusion time of the particles. Based on these results, we establish that experimental use of feedback control is realistic.Comment: 6 pages, 6 figures, to appear in Europhysics Letter

    Developing and validating a predictive model for stroke progression

    Get PDF
    <p><b>Background:</b> Progression is believed to be a common and important complication in acute stroke, and has been associated with increased mortality and morbidity. Reliable identification of predictors of early neurological deterioration could potentially benefit routine clinical care. The aim of this study was to identify predictors of early stroke progression using two independent patient cohorts.</p> <p><b>Methods:</b> Two patient cohorts were used for this study ā€“ the first cohort formed the training data set, which included consecutive patients admitted to an urban teaching hospital between 2000 and 2002, and the second cohort formed the test data set, which included patients admitted to the same hospital between 2003 and 2004. A standard definition of stroke progression was used. The first cohort (n = 863) was used to develop the model. Variables that were statistically significant (p < 0.1) on univariate analysis were included in the multivariate model. Logistic regression was the technique employed using backward stepwise regression to drop the least significant variables (p > 0.1) in turn. The second cohort (n = 216) was used to test the performance of the model. The performance of the predictive model was assessed in terms of both calibration and discrimination. Multiple imputation methods were used for dealing with the missing values.</p> <p><b>Results:</b> Variables shown to be significant predictors of stroke progression were conscious level, history of coronary heart disease, presence of hyperosmolarity, CT lesion, living alone on admission, Oxfordshire Community Stroke Project classification, presence of pyrexia and smoking status. The model appears to have reasonable discriminative properties [the median receiver-operating characteristic curve value was 0.72 (range 0.72ā€“0.73)] and to fit well with the observed data, which is indicated by the high goodness-of-fit p value [the median p value from the Hosmer-Lemeshow test was 0.90 (range 0.50ā€“0.92)].</p> <p><b>Conclusion:</b> The predictive model developed in this study contains variables that can be easily collected in practice therefore increasing its usability in clinical practice. Using this analysis approach, the discrimination and calibration of the predictive model appear sufficiently high to provide accurate predictions. This study also offers some discussion around the validation of predictive models for wider use in clinical practice.</p&gt

    Analysis of permanent magnets as elasmobranch bycatch reduction devices in hook-and-line and longline trials

    Get PDF
    Previous studies indicate that elasmobranch fishes (sharks, skates and rays) detect the Earthā€™s geomagnetic field by indirect magnetoreception through electromagnetic induction, using their ampullae of Lorenzini. Applying this concept, we evaluated the capture of elasmobranchs in the presence of permanent magnets in hook-and-line and inshore longline fishing experiments. Hooks with neodymium-iron-boron magnets significantly reduced the capture of elasmobranchs overall in comparison with control and procedural control hooks in the hook-and-line experiment. Catches of Atlantic sharpnose shark (Rhizoprionodon terraenovae) and smooth dogfish (Mustelus canis) were signif icantly reduced with magnetic hook-and-line treatments, whereas catches of spiny dogfish (Squalus acanthias) and clearnose skate (Raja eglanteria) were not. Longline hooks with barium-ferrite magnets significantly reduced total elasmobranch capture when compared with control hooks. In the longline study, capture of blacktip sharks (Carcharhinus limbatus) and southern stingrays (Dasyatis americana) was reduced on magnetic hooks, whereas capture of sandbar shark (Carcharhinus plumbeus) was not affected. Teleosts, such as red drum (Sciaenops ocellatus), Atlantic croaker (Micropogonias undulatus), oyster toadfish (Opsanus tau), black sea bass (Centropristis striata), and the bluefish (Pomatomas saltatrix), showed no hook preference in either hook-and-line or longline studies. These results indicate that permanent magnets, although eliciting species-specific capture trends, warrant further investigation in commercial longline and recreational fisheries, where bycatch mortality is a leading contributor to declines in elasmobranch populations

    Feedback-controlled transport in an interacting colloidal system

    Full text link
    Based on dynamical density functional theory (DDFT) we consider a non-equilibrium system of interacting colloidal particles driven by a constant tilting force through a periodic, symmetric "washboard" potential. We demonstrate that, despite of pronounced spatio-temporal correlations, the particle current can be reversed by adding suitable feedback control terms to the DDFT equation of motion. We explore two distinct control protocols with time delay, focussing on either the particle positions or the density profile. Our study shows that the DDFT is an appropriate framework to implement time-delayed feedback control strategies widely used in other fields of nonlinear physicsComment: 6 pages, 5 figure
    • ā€¦
    corecore