15,295 research outputs found

    Combustor liner construction

    Get PDF
    A combustor liner is fabricated from a plurality of individual segments each containing counter/parallel Finwall material and are arranged circumferentially and axially to define the combustion zone. Each segment is supported by a hook and ring construction to an opened lattice frame with sufficient tolerance between the hook and ring to permit thermal expansion with a minimum of induced stresses

    Chipping away at gamma-H2AX foci

    Get PDF
    The mammalian histone H2AX protein functions as a dosage-dependent genomic caretaker and tumor suppressor. Phosphorylation of H2AX to form gamma-H2AX in chromatin around DNA double strand breaks (DSBs) is an early event following induction of these hazardous lesions. For a decade, mechanisms that regulate H2AX phosphorylation have been investigated mainly through two-dimensional immunofluorescence (IF). We recently used chromatin immunoprecipitation (ChIP) to measure gamma-H2AX densities along chromosomal DNA strands broken in G(1) phase mouse lymphocytes. Our experiments revealed that (1) gamma-H2AX densities in nucleosomes form at high levels near DSBs and at diminishing levels farther and farther away from DNA ends, and (2) ATM regulates H2AX phosphorylation through both MDC1-dependent and MDC1-independent means. Neither of these mechanisms were discovered by previous if studies due to the inherent limitations of light microscopy. Here, we compare data obtained from parallel gamma-H2AX ChIP and three-dimensional IF analyses and discuss the impact of our findings upon molecular mechanisms that regulate H2AX phosphorylation in chromatin around DNA breakage sites

    Effect of time delay on feedback control of a flashing ratchet

    Full text link
    It was recently shown that the use of feedback control can improve the performance of a flashing ratchet. We investigate the effect of a time delay in the implementation of feedback control in a closed-loop collective flashing ratchet, using Langevin dynamics simulations. Surprisingly, for a large ensemble, a well-chosen delay time improves the ratchet performance by allowing the system to synchronize into a quasi-periodic stable mode of oscillation that reproduces the optimal average velocity for a periodically flashing ratchet. For a small ensemble, on the other hand, finite delay times significantly reduce the benefit of feedback control for the time-averaged velocity, because the relevance of information decays on a time scale set by the diffusion time of the particles. Based on these results, we establish that experimental use of feedback control is realistic.Comment: 6 pages, 6 figures, to appear in Europhysics Letter

    The Dynamics of the One-Dimensional Delta-Function Bose Gas

    Full text link
    We give a method to solve the time-dependent Schroedinger equation for a system of one-dimensional bosons interacting via a repulsive delta function potential. The method uses the ideas of Bethe Ansatz but does not use the spectral theory of the associated Hamiltonian

    Feedback-controlled transport in an interacting colloidal system

    Full text link
    Based on dynamical density functional theory (DDFT) we consider a non-equilibrium system of interacting colloidal particles driven by a constant tilting force through a periodic, symmetric "washboard" potential. We demonstrate that, despite of pronounced spatio-temporal correlations, the particle current can be reversed by adding suitable feedback control terms to the DDFT equation of motion. We explore two distinct control protocols with time delay, focussing on either the particle positions or the density profile. Our study shows that the DDFT is an appropriate framework to implement time-delayed feedback control strategies widely used in other fields of nonlinear physicsComment: 6 pages, 5 figure
    • ā€¦
    corecore