104 research outputs found

    Beam shaping using Gaussian beam modes

    Get PDF
    A beam shaping method is presented where a diffractive optical element (DOE) is designed by optimizing the complex mode coefficient weights of a set of Gaussian beam modes. This method is compared with the more standard unidirectional approach. Differential evolution is used for the optimization in both the unidirectional and Gaussian beam mode optimization methods. For the particular transforms carried out, the Gaussian beam mode set optimization (GBMSO) approach achieved more optimal solutions. The GBMSO approach is extended to design DOEs that control the amplitude distribution of a beam at multiple planes, rather than at just a single plane (i.e., the far field)

    Quasi-optical multiplexing using reflection phase gratings

    Get PDF
    Heterodyne array receiver systems for both ground based and satellite telescope facilities are now becoming feasible for imaging in the submillimetre/terahertz regions of the EM spectrum. Phase gratings can be usefully employed as high efficiency passive multiplexing devices in the local oscillator (LO) injection chain of such receivers, ensuring that each element of the array is adequately biased and that the reflected LO power level at the array is minimised. For the wavelengths of interest both transmission and reflection gratings can be manufactured by milling an appropriate pattern of slots into the surface(s) of a suitable material. Thus, the required phase modulation is produced by the resulting pattern of varying optical path lengths suffered by the incident wave-front. We report on work we are undertaking to develop all reflection quasi-optical multiplexing systems so as to reduce reflection losses at the grating and minimise the number of surfaces that can contribute to standing wave effects in the optical system. As part of this endeavour we have also developed a quasi-optical technique for analysing the inevitable degradation due to multiple reflections on transmission grating design. This analysis is based on the Gaussian beam mode technique, and a further application of this technique allows one to assess tolerance limitations on the grating

    Quasi-optical multiplexing using reflection phase gratings

    Get PDF
    Heterodyne array receiver systems for both ground based and satellite telescope facilities are now becoming feasible for imaging in the submillimetre/terahertz regions of the EM spectrum. Phase gratings can be usefully employed as high efficiency passive multiplexing devices in the local oscillator (LO) injection chain of such receivers, ensuring that each element of the array is adequately biased and that the reflected LO power level at the array is minimised. For the wavelengths of interest both transmission and reflection gratings can be manufactured by milling an appropriate pattern of slots into the surface(s) of a suitable material. Thus, the required phase modulation is produced by the resulting pattern of varying optical path lengths suffered by the incident wave-front. We report on work we are undertaking to develop all reflection quasi-optical multiplexing systems so as to reduce reflection losses at the grating and minimise the number of surfaces that can contribute to standing wave effects in the optical system. As part of this endeavour we have also developed a quasi-optical technique for analysing the inevitable degradation due to multiple reflections on transmission grating design. This analysis is based on the Gaussian beam mode technique, and a further application of this technique allows one to assess tolerance limitations on the grating

    Quasi-optical phase retrieval of radiation patterns of non-standard horn antennas at millimetre and submillimetre wavelengths

    Get PDF
    The location of the phase centres of antenna feeds is critical for optimised sensitivity and resolution on reflector antennas and telescopes. While the measurement of the far-field intensity patterns of such feeds is relatively straightforward, the direct recovery of their phase patterns requires access to expensive phase sensitive instrumentation such as a vector network analyzer. We present an inexpensive alternative quasi-optical technique, analogous to off-axis holography at visible wavelengths, that allows for the phase curvature of the feed pattern, and thus the phase centre, to be recovered with sufficient accuracy for optimizing aperture efficiency and resolution on a reflector antenna. We discuss the accuracy of the technique and compare results for the case of a specialized horn antenna for CMB polarization operating at 100GHz, using both the quasi-optical method and a vector network analyzer as a bench mark measurement tool for verification of the approach. We also include some measurements made of a lens antenna fed by a bare waveguide radiator

    Determination of the Phase Centers of Millimeter-Wave Horn Antennas Using a Holographic Interference Technique

    Get PDF
    In this paper, we discuss how a holographic interference technique can be applied in the experimental determination of the phase centers of non-standard horn antennas in the millimeter-waveband. The phase center is the point inside the horn from which the radiation appears to emanate when viewed from the far-field, and knowing its location is necessary for optimizing coupling efficiencies to quasi-optical systems. For non-standard horn designs, and other feed structures, the phase center may be difficult to reliably predict by simulation, in which case, before committing to antenna manufacture, there is a requirement for it to be determined experimentally. Although the phase center can be recovered by direct phase measurement of the far-field beam pattern, this usually involves expensive instrumentation such as a vector network analyzer for millimeter wave horn antennas. In this paper, we describe one inexpensive alternative, which is based on measuring the interference pattern in intensity between the radiation from the horn of interest and a reference beam derived from the same coherent source in an off-axis holography setup. The accuracy of the approach is improved by comparison with the interference pattern of a well-understood standard horn (such as a corrugated conical horn) in the same experimental setup. We present an example of the technique applied to a profiled smooth-walled horn antenna, which has been especially designed for cosmic microwave background (CMB) polarization experiments

    Quasi-optical phase retrieval of radiation patterns of non-standard horn antennas at millimetre and submillimetre wavelengths

    Get PDF
    The location of the phase centres of antenna feeds is critical for optimised sensitivity and resolution on reflector antennas and telescopes. While the measurement of the far-field intensity patterns of such feeds is relatively straightforward, the direct recovery of their phase patterns requires access to expensive phase sensitive instrumentation such as a vector network analyzer. We present an inexpensive alternative quasi-optical technique, analogous to off-axis holography at visible wavelengths, that allows for the phase curvature of the feed pattern, and thus the phase centre, to be recovered with sufficient accuracy for optimizing aperture efficiency and resolution on a reflector antenna. We discuss the accuracy of the technique and compare results for the case of a specialized horn antenna for CMB polarization operating at 100GHz, using both the quasi-optical method and a vector network analyzer as a bench mark measurement tool for verification of the approach. We also include some measurements made of a lens antenna fed by a bare waveguide radiator

    Beam Mode Expansion of Corrugated Conical Horns with Phase Correcting Lens: Application to Radioastronomy Receivers

    Get PDF
    A classical radioastronomy receiver is fed with a corrugated horn and an independent lens, both placed in a cryostat to lower the noise temperature. The beam is focused and directed using a combination of elliptical and plane mirrors. This paper proposes modifying the initial feeding system by placing the lens onto the horn aperture, thereby allowing a size reduction of the horn and lens, and a simplification of their mechanical design. The profiled lens is shaped to correct the phase error on the horn aperture. A quasi-optical model of the horn-plus-lens system has been developed using a Beam Mode Expansion (BME). Results using both a hyperbolic-planar lens and a spherical-elliptical lens, as well as results obtained by using Geometrical Optics (GO) with a Kirchoff–Huygens integration to get the far-field pattern, have been compared with measurements. As a direct application, a full focusing system for the new 40-m radiotelescope at the “Centro Astron´omico de Yebes” is presented for the 22, 30 and 45 GHz bands. This paper has developed a QO model for a corrugated conical horn with a phase-correcting lens

    Beam Mode Expansion of Corrugated Conical Horns with Phase Correcting Lens: Application to Radioastronomy Receivers

    Get PDF
    A classical radioastronomy receiver is fed with a corrugated horn and an independent lens, both placed in a cryostat to lower the noise temperature. The beam is focused and directed using a combination of elliptical and plane mirrors. This paper proposes modifying the initial feeding system by placing the lens onto the horn aperture, thereby allowing a size reduction of the horn and lens, and a simplification of their mechanical design. The profiled lens is shaped to correct the phase error on the horn aperture. A quasi-optical model of the horn-plus-lens system has been developed using a Beam Mode Expansion (BME). Results using both a hyperbolic-planar lens and a spherical-elliptical lens, as well as results obtained by using Geometrical Optics (GO) with a Kirchoff–Huygens integration to get the far-field pattern, have been compared with measurements. As a direct application, a full focusing system for the new 40-m radiotelescope at the “Centro Astron´omico de Yebes” is presented for the 22, 30 and 45 GHz bands. This paper has developed a QO model for a corrugated conical horn with a phase-correcting lens

    Experimental Verification of Electromagnetic Simulations of a HIFI Mixer Sub-Assembly

    Get PDF
    Phase II of the study "Far-Infrared Optics Design & Verification", commissioned by the European Space Agency (ESA), we investigate the ability of several commercial software packages (GRASP, CODEV, GLAD and ASAP) to predict the performance of a representative example of a submillimeter-wave optical system. In this paper, we use the software packages to predict the behaviour of a Mixer Sub-Assembly (MSA) of HIFI, and we compare the simulations with near-field measurements at 480 GHz. In order to be able to distinguish between the predictions of the packages, we move the corrugated horn of the MSA through its nominal focus position. A unique feature of the experimental arrangement is that the measured position of every field point is known absolutely to within fractions of a wavelength. In this paper we present the results of this through-focus experiment, which give a good first-order indication of the agreement between measured and simulated behaviour of a typical submillimeter-wave optical system
    • …
    corecore