7 research outputs found

    Mitochondrial genotype influences the response to cold stress in the European green crab Carcinus maenas

    Get PDF
    Author Posting. © Company of Biologists, 2019. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 222(17), (2019):jeb.20352, doi: 10.1242/jeb.203521.Hybrid zones provide natural experiments in recombination within and between genomes that may have strong effects on organismal fitness. On the East Coast of North America, two distinct lineages of the European green crab (Carcinus maenas) have been introduced in the last two centuries. These two lineages with putatively different adaptive properties have hybridized along the coast of the eastern Gulf of Maine, producing new nuclear and mitochondrial combinations that show clinal variation correlated with water temperature. To test the hypothesis that mitochondrial or nuclear genes have effects on thermal tolerance, we first measured the response to cold stress in crabs collected throughout the hybrid zone, then sequenced the mitochondrial CO1 gene and two nuclear single nucleotide polymorphisms (SNPs) representative of nuclear genetic lineage. Mitochondrial haplotype had a strong association with the ability of crabs to right themselves at 4.5°C that was sex specific: haplotypes originally from northern Europe gave male crabs an advantage while there was no haplotype effect on righting in female crabs. By contrast, the two nuclear SNPs that were significant outliers in a comparison between northern and southern C. maenas populations had no effect on righting response at low temperature. These results add C. maenas to the shortlist of ectotherms in which mitochondrial variation has been shown to affect thermal tolerance, and suggest that natural selection is shaping the structure of the hybrid zone across the Gulf of Maine. Our limited genomic sampling does not eliminate the strong possibility that mito-nuclear co-adaptation may play a role in the differences in thermal phenotypes documented here. Linkage between mitochondrial genotype and thermal tolerance suggests a role for local adaptation in promoting the spread of invasive populations of C. maenas around the world.We would like to thank T. Suskiewicz and L. Johnson for help collecting crabs from Halifax, NS, and Robin Seeley for collections from the Isle of Shoals. We thank Timothy Fuller for designing and testing the SMC primers. We thank Mark Murray for facilitating a productive stay on Kent Island, and Nick Keeney for assistance with animal care at the Schiller Coastal Studies Center. This is publication no. 5 from the Bowdoin Marine Laboratory.2020-07-0

    Data from: Mitochondrial genotype influences the response to cold stress in the European green crab Carcinus maenas

    No full text
    Hybrid zones provide natural experiments in recombination within and between genomes that may have strong effects on organismal fitness. On the East Coast of North America, two distinct lineages of the European green crab (Carcinus maenas) have been introduced in the last two centuries. These two lineages with putatively different adaptive properties have hybridized along the coast of the eastern Gulf of Maine, producing new nuclear and mitochondrial combinations that show clinal variation correlated with water temperature. To test the hypothesis that mitochondrial or nuclear genes have effects on thermal tolerance, we first measured the response to cold stress in crabs collected throughout the hybrid zone, then sequenced the mitochondrial CO1 gene and two nuclear SNPs representative of nuclear genetic lineage. Mitochondrial haplotype had a strong association with the ability of crabs to right themselves at 4.5 &[deg]C that was sex specific: haplotypes originally from northern Europe gave male crabs an advantage while there was no haplotype effect on righting in female crabs. By contrast, the two nuclear SNPs that were significant outliers in a comparison between northern and southern C. maenas populations had no effect on righting response at low temperature. These results add C. maenas to the short list of ectotherms in which mitochondrial variation has been shown to affect thermal tolerance, and suggests that natural selection is shaping the structure of the hybrid zone across the Gulf of Maine. Our limited genomic sampling does not eliminate the strong possibility that mitonuclear coadaptation may play a role in the differences in thermal phenotypes documented here. Linkage between mitochondrial genotype and thermal tolerance suggests a role for local adaptation in promoting the spread of invasive populations of C. maenas around the world

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore