44,071 research outputs found

    Development of deployable structures for large space platform systems, volume 2

    Get PDF
    Ground test article design, deployable volumes concept development, habitat and hangar conceptual designs, and deployable volumes analyses are addressed

    Flexible radiator system: Executive summary

    Get PDF
    A full scale prototype flexible radiator panel was designed, built and tested. The panel, has approximately 173 sq ft of radiating area and is designed to reject 1.33 kW of heat to a 0 F sink with a 100 F fluid inlet. The panel is constructed from a flexible Teflon/silver mesh fin surrounding 1/8 inch Teflon tubes. The prototype panel is stowed on a 10 inch diameter by 4 foot wide drum. (It rolls up to a diameter of 17 inches when fully stowed). Deployment of the soft tube prototype is via two four inch diameter Kevlar/Mylar inflation tubes with flat springs incorporated in each tube. Nitrogen is normally used for the deployment with approximately 1 psi required. The springs retract the panels when the inflation tubes are deflated. Another method of deployment available for the soft tube flexible is a motor driven deployable boom. This eliminates the need for expendables when the panel area is varied during the mission for heat load control. The soft tube panel is designed for a 90% probability of no punctured tube in a 30 day mission. The acceptable working fluids for this soft tube flexible are Coolanol 15, Coolanol 20 and Glycol/water (a eutectic mixture)

    Development of deployable structures for large space platform systems. Volume 1: Executive summary

    Get PDF
    Candidate deployable linear platform system concepts suitable for development to technology readiness by 1986 are reviewed. The systems concepts were based on trades of alternate deployable/retractable structure concepts, integration of utilities, and interface approaches for docking and assembly of payloads and subsystems. The deployable volume studies involved generation of concepts for deployable volumes which could be used as unpressurized or pressurized hangars, habitats and interconnecting tunnels. Concept generation emphasized using flexible materials and deployable truss structure technology

    Development of deployable structures for large space platform systems, part 1

    Get PDF
    Eight deployable platform design objectives were established: autodeploy/retract; fully integrated utilities; configuration variability; versatile payload and subsystem interfaces; structural and packing efficiency; 1986 technology readiness; minimum EVA/RMS; and Shuttle operational compatibility

    Evaluation of non-specular reflecting silvered Teflon and filled adhesives

    Get PDF
    A non-specular silver-Teflon tape thermal control coating was tested to provide the data necessary to qualify it for use on the Space Shuttle Orbiter radiators. Effects of cure cycle temperature and pressure on optical and mechanical properties on the silver-Teflon tape were evaluated. The baseline Permacel P-223 adhesive, used with the specular silver-Teflon tape initially qualified for the Orbiter radiators, and four alternate metal-filled and unfilled adhesives were evaluated. Tests showed the cure process has no effect on the silver-Teflon optical properties, and that the baseline adhesive cure cycle gives best results. In addition the P-223 adhesive bond is more reproducible than the alternates, and the non-specular tape meets both the mechanical and the optical requirements of the Orbiter radiator coating specification. Existing Orbiter coating techniques were demonstrated to be effective in aplying the non-specular tape to a curved panel simulating the radiators. Autho

    Evaluating force field accuracy with long-time simulations of a tryptophan zipper peptide

    Full text link
    We have combined a custom implementation of the fast multiple-time-stepping LN integrator with parallel tempering to explore folding properties of small peptides in implicit solvent on the time scale of microseconds. We applied this algorithm to the synthetic {\beta}-hairpin trpzip2 and one of its sequence variants W2W9. Each simulation consisted of over 12 {\mu}s of aggregated virtual time. Several measures of folding behavior showed convergence, allowing comparison with experimental equilibrium properties. Our simulations suggest that the electrostatic interaction of tryptophan sidechains is responsible for much of the stability of the native fold. We conclude that the ff99 force field combined with ff96 {\phi} and {\psi} dihedral energies and implicit solvent can reproduce plausible folding behavior in both trpzip2 and W2W9.Comment: 10 pages, 11 figures, submitted to the Journal of Chemical Physics on June 28, 201
    corecore