253 research outputs found
The Ising-Kondo lattice with transverse field: an f-moment Hamiltonian for URu2Si2?
We study the phase diagram of the Ising-Kondo lattice with transverse
magnetic field as a possible model for the weak-moment heavy-fermion compound
URu2Si2, in terms of two low-lying f singlets in which the uranium moment is
coupled by on-site exchange to the conduction electron spins. In the mean-field
approximation for an extended range of parameters, we show that the conduction
electron magnetization responds logarithmically to f-moment formation, that the
ordered moment in the antiferromagnetic state is anomalously small, and that
the Neel temperature is of the order observed. The model gives a qualitatively
correct temperature-dependence, but not magnitude, of the specific heat. The
majority of the specific heat jump at the Neel temperature arises from the
formation of a spin gap in the conduction electron spectrum. We also discuss
the single-impurity version of the model and speculate on ways to increase the
specific heat coefficient. In the limits of small bandwidth and of small
Ising-Kondo coupling, we find that the model corresponds to anisotropic
Heisenberg and Hubbard models respectively.Comment: 20 pages RevTeX including 5 figures (1 in LaTeX, 4 in uuencoded EPS),
Received by Phys. Rev. B 19 April 199
Recommended from our members
Surety of the nation`s critical infrastructures: The challenge restructuring poses to the telecommunications sector
The telecommunications sector plays a pivotal role in the system of increasingly connected and interdependent networks that make up national infrastructure. An assessment of the probable structure and function of the bit-moving industry in the twenty-first century must include issues associated with the surety of telecommunications. The term surety, as used here, means confidence in the acceptable behavior of a system in both intended and unintended circumstances. This paper outlines various engineering approaches to surety in systems, generally, and in the telecommunications infrastructure, specifically. It uses the experience and expectations of the telecommunications system of the US as an example of the global challenges. The paper examines the principal factors underlying the change to more distributed systems in this sector, assesses surety issues associated with these changes, and suggests several possible strategies for mitigation. It also studies the ramifications of what could happen if this sector became a target for those seeking to compromise a nation`s security and economic well being. Experts in this area generally agree that the U. S. telecommunications sector will eventually respond in a way that meets market demands for surety. Questions remain open, however, about confidence in the telecommunications sector and the nation`s infrastructure during unintended circumstances--such as those posed by information warfare or by cascading software failures. Resolution of these questions is complicated by the lack of clear accountability of the private and the public sectors for the surety of telecommunications
Restricted three body problems at the nanoscale
In this paper, we investigate some of the classical restricted three body
problems at the nanoscale, such as the circular planar restricted problem for
three C60 fullerenes, and a carbon atom and two C60 fullerenes. We model the
van der Waals forces between the fullerenes by the Lennard-Jones potential. In
particular, the pairwise potential energies between the carbon atoms on the
fullerenes are approximated by the continuous approach, so that the total
molecular energy between two fullerenes can be determined analytically. Since
we assume that such interactions between the molecules occur at sufficiently
large distance, the classical three body problems analysis is legitimate to
determine the collective angular velocity of the two and three C60 fullerenes
at the nanoscale. We find that the maximum angular frequency of the two and
three fullerenes systems reach the terahertz range and we determine the
stationary points and the points which have maximum velocity for the carbon
atom for the carbon atom and the two fullerenes system
Contact process in a wedge
We prove that the supercritical one-dimensional contact process survives in
certain wedge-like space-time regions, and that when it survives it couples
with the unrestricted contact process started from its upper invariant measure.
As an application we show that a type of weak coexistence is possible in the
nearest-neighbor ``grass-bushes-trees'' successional model introduced in
Durrett and Swindle (1991).Comment: 11 pages, 4 figure
Keeping it in the family: Parental influences on young people's attitudes to police
Prior research finds young people are less satisfied with police than their older counterparts. Despite this, our understanding of youth attitudes to police is limited, as most research has focused on adult attitudes to police. This study adds to our understanding by examining the influence of parent–child dynamics on youth attitudes to police. We predict that youth attitudes to police will be influenced by their parents’ attitudes. A survey of 540 school students in South East Queensland reveals that perceived parental attitudes to police are associated with youth attitudes to police. However, this effect is partially mediated by maternal, but not paternal attachment. These findings suggest that youth attitudes to police are not simply influenced by contact with police and delinquency, but that familial context is important. Consequently, our theoretical understanding of youth attitudes to police must move beyond a focus upon police contact and delinquency
Bessel Process and Conformal Quantum Mechanics
Different aspects of the connection between the Bessel process and the
conformal quantum mechanics (CQM) are discussed. The meaning of the possible
generalizations of both models is investigated with respect to the other model,
including self adjoint extension of the CQM. Some other generalizations such as
the Bessel process in the wide sense and radial Ornstein- Uhlenbeck process are
discussed with respect to the underlying conformal group structure.Comment: 28 Page
On-disk coronal rain
Small and elongated, cool and dense blob-like structures are being reported
with high resolution telescopes in physically different regions throughout the
solar atmosphere. Their detection and the understanding of their formation,
morphology and thermodynamical characteristics can provide important
information on their hosting environment, especially concerning the magnetic
field, whose understanding constitutes a major problem in solar physics. An
example of such blobs is coronal rain, a phenomenon of thermal non- equilibrium
observed in active region loops, which consists of cool and dense chromospheric
blobs falling along loop-like paths from coronal heights. So far, only off-limb
coronal rain has been observed and few reports on the phenomenon exist. In the
present work, several datasets of on-disk H{\alpha} observations with the CRisp
Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) are
analyzed. A special family of on-disk blobs is selected for each dataset and a
statistical analysis is carried out on their dynamics, morphology and
temperatures. All characteristics present distributions which are very similar
to reported coronal rain statistics. We discuss possible interpretations
considering other similar blob-like structures reported so far and show that a
coronal rain interpretation is the most likely one. Their chromospheric nature
and the projection effects (which eliminate all direct possibility of height
estimation) on one side, and their small sizes, fast dynamics, and especially,
their faint character (offering low contrast with the background intensity) on
the other side, are found as the main causes for the absence until now of the
detection of this on-disk coronal rain counterpart.Comment: 18 pages, 10 figures. Accepted for Solar Physic
Joint modeling of longitudinal outcomes and survival using latent growth modeling approach in a mesothelioma trial
Joint modeling of longitudinal and survival data can provide more efficient and less biased estimates of treatment effects through accounting for the associations between these two data types. Sponsors of oncology clinical trials routinely and increasingly include patient-reported outcome (PRO) instruments to evaluate the effect of treatment on symptoms, functioning, and quality of life. Known publications of these trials typically do not include jointly modeled analyses and results. We formulated several joint models based on a latent growth model for longitudinal PRO data and a Cox proportional hazards model for survival data. The longitudinal and survival components were linked through either a latent growth trajectory or shared random effects. We applied these models to data from a randomized phase III oncology clinical trial in mesothelioma. We compared the results derived under different model specifications and showed that the use of joint modeling may result in improved estimates of the overall treatment effect
Length of carotid stenosis predicts peri-procedural stroke or death and restenosis in patients randomized to endovascular treatment or endarterectomy.
BACKGROUND: The anatomy of carotid stenosis may influence the outcome of endovascular treatment or carotid endarterectomy. Whether anatomy favors one treatment over the other in terms of safety or efficacy has not been investigated in randomized trials.
METHODS: In 414 patients with mostly symptomatic carotid stenosis randomized to endovascular treatment (angioplasty or stenting; n = 213) or carotid endarterectomy (n = 211) in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS), the degree and length of stenosis and plaque surface irregularity were assessed on baseline intraarterial angiography. Outcome measures were stroke or death occurring between randomization and 30 days after treatment, and ipsilateral stroke and restenosis ≥50% during follow-up. RESULTS: Carotid stenosis longer than 0.65 times the common carotid artery diameter was associated with increased risk of peri-procedural stroke or death after both endovascular treatment [odds ratio 2.79 (1.17-6.65), P = 0.02] and carotid endarterectomy [2.43 (1.03-5.73), P = 0.04], and with increased long-term risk of restenosis in endovascular treatment [hazard ratio 1.68 (1.12-2.53), P = 0.01]. The excess in restenosis after endovascular treatment compared with carotid endarterectomy was significantly greater in patients with long stenosis than with short stenosis at baseline (interaction P = 0.003). Results remained significant after multivariate adjustment. No associations were found for degree of stenosis and plaque surface.
CONCLUSIONS: Increasing stenosis length is an independent risk factor for peri-procedural stroke or death in endovascular treatment and carotid endarterectomy, without favoring one treatment over the other. However, the excess restenosis rate after endovascular treatment compared with carotid endarterectomy increases with longer stenosis at baseline. Stenosis length merits further investigation in carotid revascularisation trials
- …