5,240 research outputs found

    Pulsation-Initiated Mass Loss in Luminous Blue Variables: A Parameter Study

    Full text link
    Luminous blue variables (LBVs) are characterized by semi-periodic episodes of enhanced mass-loss, or outburst. The cause of these outbursts has thus far been a mystery. One explanation is that they are initiated by kappa-effect pulsations in the atmosphere caused by an increase in luminosity at temperatures near the so-called ``iron bump'' (T ~ 200,000 K), where the Fe opacity suddenly increases. Due to a lag in the onset of convection, this luminosity can build until it exceeds the Eddington limit locally, seeding pulsations and possibly driving some mass from the star. We present some preliminary results from a parameter study focusing on the conditions necessary to trigger normal S-Dor type (as opposed to extreme eta-Car type) outbursts. We find that as Y increases or Z decreases, the pulsational amplitude decreases and outburst-like behavior, indicated by a large, sudden increase in photospheric velocity, becomes likes likely.Comment: 6 pages, 4 figures, to be published in the Proceedings of Massive Stars as Cosmic Engines, IAU Symp 250, ed. F. Bresolin, P. A. Crowther, & J. Puls (Cambridge Univ. Press

    Creation and characterization of vector vortex modes for classical and quantum communication

    Full text link
    Vector vortex beams are structured states of light that are non-separable in their polarisation and spatial mode, they are eigenmodes of free-space and many fibre systems, and have the capacity to be used as a modal basis for both classical and quantum communication. Here we outline recent progress in our understanding of these modes, from their creation to their characterization and detection. We then use these tools to study the propagation behaviour of such modes in free-space and optical fibre and show that modal cross-talk results in a decay of vector states into separable scalar modes, with a concomitant loss of information. We present a comparison between probabilistic and deterministic detection schemes showing that the former, while ubiquitous, negates the very benefit of increased dimensionality in quantum communication while reducing signal in classical communication links. This work provides a useful introduction to the field as well as presenting new findings and perspectives to advance it further

    Practical trapped-ion protocols for universal qudit-based quantum computing

    Full text link
    The notion of universal quantum computation can be generalized to multi-level qudits, which offer advantages in resource usage and algorithmic efficiencies. Trapped ions, which are pristine and well-controlled quantum systems, offer an ideal platform to develop qudit-based quantum information processing. Previous work has not fully explored the practicality of implementing trapped-ion qudits accounting for known experimental error sources. Here, we describe a universal set of protocols for state preparation, single-qudit gates, a new generalization of the M\o{}lmer-S\o{}rensen gate for two-qudit gates, and a measurement scheme which utilizes shelving to a meta-stable state. We numerically simulate known sources of error from previous trapped ion experiments, and show that there are no fundamental limitations to achieving fidelities above 99%99\% for three-level qudits encoded in 137Ba+^{137}\mathrm{Ba}^+ ions. Our methods are extensible to higher-dimensional qudits, and our measurement and single-qudit gate protocols can achieve 99%99\% fidelities for five-level qudits. We identify avenues to further decrease errors in future work. Our results suggest that three-level trapped ion qudits will be a useful technology for quantum information processing
    • …
    corecore