25 research outputs found

    Autogenic-Feedback Training Exercise (AFTE) Method and System

    Get PDF
    The Autogenic-Feedback Training Exercise (AFTE) method of the present invention is a combined application of physiologic and perceptual training techniques. such as autogenic therapy and biofeedback. This combined therapy approach produces a methodology that is appreciably more effective than either of the individual techniques used separately. The AFTE method enables sufficient magnitude of control necessary to significantly reduce the behavioral and physiologic reactions to severe environmental stressors. It produces learned effects that are persistent over time and are resistant to extinction and it can be administered in a short period of time. The AFTE method may be used efficiently in several applications, among which are the following: to improve pilot and crew performance during emergency flying conditions; to train people to prevent the occurrence of nausea and vomiting associated with motion and sea sickness, or morning sickness in early pregnancy; as a training method for preventing or counteracting air-sickness symptoms in high-performance military aircraft; for use as a method for cardiovascular training, as well as for multiple other autonomic responses, which may contribute to the alleviation of Space Motion Sickness (SMS) in astronauts and cosmonauts; training people suffering from migraine or tension headaches to control peripheral blood flow and reduce forehead and/or trapezius muscle tension; training elderly people suffering from fecal incontinence to control their sphincter muscles; training cancer patients to reduce the nauseagenic effects of chemotherapy; and training patients with Chronic Intestinal Pseudo-obstruction (CIP)

    Autogenic feedback training experiment: A preventative method for space motion sickness

    Get PDF
    Space motion sickness is a disorder which produces symptoms similar to those of motion sickness on Earth. This syndrome has affected approximately 50 percent of all astronauts and cosmonauts exposed to microgravity in space, but it differs from what is commonly known as motion sickness in a number of critical ways. There is currently no ground-based method for predicting susceptibility to motion sickness in space. Antimotion sickness drugs have had limited success in preventing or counteracting symptoms in space, and frequently caused debilitating side effects. The objectives were: (1) to evaluate the effectiveness of Autogenic-Feedback Training as a countermeasure for space motion sickness; (2) to compare physiological data and in-flight symptom reports to ground-based motion sickness data; and (3) to predict susceptibility to space motion sickness based on pre-flight data of each treatment group crew member

    A computer program for processing impedance cardiographic data: Improving accuracy through user-interactive software

    Get PDF
    This report contains the source code and documentation for a computer program used to process impedance cardiography data. The cardiodynamic measures derived from impedance cardiography are ventricular stroke column, cardiac output, cardiac index and Heather index. The program digitizes data collected from the Minnesota Impedance Cardiograph, Electrocardiography (ECG), and respiratory cycles and then stores these data on hard disk. It computes the cardiodynamic functions using interactive graphics and stores the means and standard deviations of each 15-sec data epoch on floppy disk. This software was designed on a Digital PRO380 microcomputer and used version 2.0 of P/OS, with (minimally) a 4-channel 16-bit analog/digital (A/D) converter. Applications software is written in FORTRAN 77, and uses Digital's Pro-Tool Kit Real Time Interface Library, CORE Graphic Library, and laboratory routines. Source code can be readily modified to accommodate alternative detection, A/D conversion and interactive graphics. The object code utilizing overlays and multitasking has a maximum of 50 Kbytes

    The effects of autogenic-feedback training on motion sickness severity and heart rate variability in astronauts

    Get PDF
    Space motion sickness (SMS) affects 50 percent of all people during early days of spaceflight. This study describes the results of two Shuttle flight experiments in which autogenic-feedback training (AFT), a physiological conditioning method, was tested as a treatment for this disorder. Of the six who were designated as flight subjects (two women and four men), three were given treatment and three served as controls (i.e., no AFT). Treatment subjects were given 6 hours of preflight AFT. Preflight results showed that AFT produced a significant increase in tolerance to rotating chair motion sickness tests. Further, this increased tolerance was associated with changes in specific physiological responses and reports of reduced malaise. Flight results showed that two of the three control subjects experienced repeated vomiting on the first mission day, while one subject experienced only moderate malaise. Of the three treatment subjects, one experienced mild discomfort, one moderate discomfort, and one severe motion sickness. Only the three control subjects took medication for symptom suppression. Measures of cardiac function reflective of vagal control were shown to be affected especially strongly on the first day of space flight. AFT given for control of heart rate, respiration, and other autonomic activity influenced both the vagal control measures and SMS. These data suggest that AFT may be an effective treatment for space motion sickness; however, this cannot be demonstrated conclusively with the small number of subjects described

    Autogenic-Feedback Training (AFT) as a preventive method for space motion sickness: Background and experimental design

    Get PDF
    Finding an effective treatment for the motion sickness-like symptoms that occur in space has become a high priority for NASA. The background research is reviewed and the experimental design of a formal life sciences shuttle flight experiment designed to prevent space motion sickness in shuttle crew members is presented. This experiment utilizes a behavioral medicine approach to solving this problem. This method, Autogenic-Feedback Training (AFT), involves training subjects to voluntarily control several of their own physiological responses to environmental stressors. AFT has been used reliably to increase tolerance to motion sickness during ground-based tests in over 200 men and women under a variety of conditions that induce motion sickness, and preliminary evidence from space suggests that AFT may be an effective treatment for space motion sickness as well. Proposed changes to this experiment for future manifests are included

    Assessing Individual Differences in Adaptation to Extreme Environments: A 36-Hour Sleep Deprivation Study

    Get PDF
    In space, astronauts may experience effects of cumulative sleep loss due to demanding work schedules that can result in cognitive performance impairments, mood state deteriorations, and sleep-wake cycle disruption. Individuals who experience sleep deprivation of six hours beyond normal sleep times experience detrimental changes in their mood and performance states. Hence, the potential for life threatening errors increases exponentially with sleep deprivation. We explored the effects of 36-hours of sleep deprivation on cognitive performance, mood states, and physiological responses to identify which metrics may best predict fatigue induced performance decrements of individuals

    Operational Applications of Autogenic Feedback Training Exercise as a Treatment for Airsickness in the Military

    Get PDF
    Airsickness is experienced by about 50% of military aviators some time in their career. Aviators who suffer from recurrent episodes of airsickness are typically referred to the Naval Aerospace Medical Institute (NAMI) at Pensacola where they undergo extensive evaluation and 8 weeks of training in the Self-Paced Airsickness Desensitization (SPAD) program. Researchers at NASA Ames have developed an alternative mitigation training program, Autogenic Feedback Training Exercise (AFTE) that has demonstrated an 80% success rate for improving motion sickness tolerance

    Summary of Payload Integration Plan (PIP) for Starlab-1 flight experiment, enclosure 3

    Get PDF
    The objectives of the Autogenic Feedback Training (AFT) are to: determine if preflight AFT is an effective treatment for space adaptation syndrome (SAS); determine if preflight improvements in motion sickness tolerance can be used to predict crewmembers' success in controlling symptoms in flight; and identify differences and similarities between the physiological data from preflight motion sickness tests and data collected during symptom episodes in space. The goal is to test the AFT on 8 trained and 8 control subjects. At present 2 trained and 2 contol subjects were tested. The testing will continue until the experimental goal of testing 16 individual is reached

    An Evaluation of the Frequency and Severity of Motion Sickness Incidences in Personnel Within the Command and Control Vehicle (C2V)

    Get PDF
    The purpose of this study was to assess the frequency and severity of motion sickness in personnel during a field exercise in the Command and Control Vehicle (C2V). This vehicle contains four workstations where military personnel are expected to perform command decisions in the field during combat conditions. Eight active duty military men (U.S. Army) at the Yuma Proving Grounds in Arizona participated in this study. All subjects were given baseline performance tests while their physiological responses were monitored on the first day. On the second day of their participation, subjects rode in the C2V while their physiological responses and performance measures were recorded. Self-reports of motion sickness were also recorded. Results showed that only one subject experienced two incidences of emesis. However, seven out of the eight subjects reported other motion sickness symptoms; most predominant was the report of drowsiness, which occurred a total of 19 times. Changes in physiological responses were observed relative to motion sickness symptoms reported and the different environmental conditions (i.e., level, hills, gravel) during the field exercise. Performance data showed an overall decrement during the C2V exercise. These findings suggest that malaise and severe drowsiness can potentially impact the operational efficiency of the C2V crew. It was concluded that conflicting sensory information from the subject's visual displays and movements of the vehicle during the field exercise significantly contributed to motion sickness symptoms. It was recommended that a second study be conducted to further evaluate the impact of seat position or orientation and C2V experience on motion sickness susceptibility. Further, it was recommended that an investigation be performed on behavioral methods for improving crew alertness, motivation, and performance and for reducing malaise

    Spacelab 3 flight experiment No. 3AFT23: Autogenic-feedback training as a preventive method for space adaptation syndrome

    Get PDF
    Space adaptation syndrome is a motion sickness-like disorder which affects up to 50 percent of all people exposed to microgravity in space. This experiment tested a physiological conditioning procedure (Autogenic-Feedback Training, AFT) as an alternative to pharmacological management. Four astronauts participated as subjects in this experiment. Crewmembers A and B served as treatment subjects. Both received preflight training for control of heart rate, respiration rate, peripheral blood volume, and skin conductance. Crewmembers C and D served as controls (i.e., did not receive training). Crewmember A showed reliable control of his own physiological responses, and a significant increase in motion sickness tolerance after training. Crewmember B, however, demonstrated much less control and only a moderate increase in motion sickness tolerance was observed after training. The inflight symptom reports and physiological data recordings revealed that Crewmember A did not experience any severe symptom episodes during the mission, while Crewmember B reported one severe symptom episode. Both control group subjects, C and D (who took antimotion sickness medication), reported multiple symptom episodes on mission day 0. Both inflight data and crew reports indicate that AFT may be an effective countermeasure. Additional data must be obtained inflight (a total of eight treatment and eight control subjects) before final evaluation of this treatment can be made
    corecore