2,200 research outputs found

    Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study

    Get PDF
    Background Artificial intelligence (AI) is increasingly being used in healthcare. Here, AI-based chatbot systems can act as automated conversational agents, capable of promoting health, providing education, and potentially prompting behaviour change. Exploring the motivation to use health chatbots is required to predict uptake; however, few studies to date have explored their acceptability. This research aimed to explore participants’ willingness to engage with AI-led health chatbots. Methods The study incorporated semi-structured interviews (N-29) which informed the development of an online survey (N-216) advertised via social media. Interviews were recorded, transcribed verbatim and analysed thematically. A survey of 24 items explored demographic and attitudinal variables, including acceptability and perceived utility. The quantitative data were analysed using binary regressions with a single categorical predictor. Results Three broad themes: ‘Understanding of chatbots’, ‘AI hesitancy’ and ‘Motivations for health chatbots’ were identified, outlining concerns about accuracy, cyber-security, and the inability of AI-led services to empathise. The survey showed moderate acceptability (67%), correlated negatively with perceived poorer IT skills OR = 0.32 [CI95%:0.13–0.78] and dislike for talking to computers OR = 0.77 [CI95%:0.60–0.99] as well as positively correlated with perceived utility OR = 5.10 [CI95%:3.08–8.43], positive attitude OR = 2.71 [CI95%:1.77–4.16] and perceived trustworthiness OR = 1.92 [CI95%:1.13–3.25]. Conclusion Most internet users would be receptive to using health chatbots, although hesitancy regarding this technology is likely to compromise engagement. Intervention designers focusing on AI-led health chatbots need to employ user-centred and theory-based approaches addressing patients’ concerns and optimising user experience in order to achieve the best uptake and utilisation. Patients’ perspectives, motivation and capabilities need to be taken into account when developing and assessing the effectiveness of health chatbots

    The Changing AGN Population

    Full text link
    We investigate how the fraction of broad-line sources in the AGN population changes with X-ray luminosity and redshift. We first construct the rest-frame hard-energy (2-8 keV) X-ray luminosity function (HXLF) at z=0.1-1 using Chandra Lockman Hole-Northwest wide-area data, Chandra Deep Field-North 2 Ms data, other Chandra deep field data, and the ASCA Large Sky Survey data. We find that broad-line AGNs dominate above 3e43 ergs/s and have a mean luminosity of 1.3e44 ergs/s. Type II AGNs can only become an important component of the X-ray population at Seyfert-like X-ray luminosities. We then construct z=0.1-0.5 and z=0.5-1 HXLFs and compare them with both the local HXLF measured from HEAO-1 A2 survey data and the z=1.5-3 HXLF measured from soft-energy (0.5-2 keV) Chandra and ROSAT data. We find that the number density of >1e44 ergs/s sources (quasars) steadily declines with decreasing redshift, while the number density of 1e43-1e44 ergs/s sources peaks at z=0.5-1. Strikingly, however, the number density of broad-line AGNs remains roughly constant with redshift while their average luminosities decline at the lower redshifts, showing another example of cosmic downsizing.Comment: Accepted by The Astrophysical Journal Letters, 5 page

    The Submillimeter Properties of the 1 Ms Chandra Deep Field North X-ray Sample

    Get PDF
    We present submillimeter observations for 136 of the 370 X-ray sources detected in the 1 Ms exposure of the Chandra Deep Field North. Ten of the X-ray sources are significantly detected in the submillimeter. The average X-ray source in the sample has a significant 850 micron flux of 1.69+/-0.27 mJy. This value shows little dependence on the 2-8 keV flux from 5e-16 erg/cm^2/s to 1e-14 erg/cm^2/s. The ensemble of X-ray sources contribute about 10% of the extragalactic background light at 850 microns. The submillimeter excess is found to be strongest in the optically faint X-ray sources that are also seen at 20 cm, which is consistent with these X-ray sources being obscured and at high redshift (z>1).Comment: 5 pages, submitted to The Astrophysical Journal Letter

    The Chandra Large Area Synoptic X-ray Survey (CLASXS) of the Lockman Hole-Northwest: The X-ray Catalog

    Full text link
    We present the X-ray catalog and basic results from our Chandra Large Area Synoptic X-ray Survey (CLASXS) of the Lockman Hole-Northwest field. Our 9 ACIS-I fields cover a contiguous solid angle of ~0.4 sq. deg. and reach fluxes of 5E-16 cgs (0.4-2 keV) and 3E-15 cgs (2-8keV). Our survey bridges the gap between ultradeep pencil-beam surveys, such as the Chandra Deep Fields (CDFs), and shallower, large area surveys, allowing a better probe of the X-ray sources that contribute most of the 2-10 keV cosmic X-ray background (CXB). We find a total of 525 X-ray point sources and 4 extended sources. At ~10E-14 cgs 2-8 keV, our number counts are significantly higher than those of several non-contiguous, large area surveys. On the other hand, the integrated flux from the CLASXS field, combined with ASCA and Chandra ultradeep surveys, is consistent with results from other large area surveys, within the variance of the CXB. Spectral evolution is seen in the hardening of the sources at fluxes below 1E-14 cgs Above 4E1-14 cgs(0.4-8 keV), ~60 of the sources are variable. Four extended sources in CLASXS is consistent with the previously measured LogN-LogS of galaxy clusters. We report the discovery of a gravitational lensing arc associated with one of these sources. (Abridged)Comment: 67 pages, 26 figures, accepted for publication in the Astronomical Journa

    Telemonitoring after discharge from hospital with heart failure: cost-effectiveness modelling of alternative service designs.

    Get PDF
    Objectives To estimate the cost-effectiveness of remote monitoring strategies versus usual care for adults recently discharged after a heart failure (HF) exacerbation. Design Decision analysis modelling of cost-effectiveness using secondary data sources. Setting Acute hospitals in the UK. Patients Patients recently discharged (within 28 days) after a HF exacerbation. Interventions Structured telephone support (STS) via human to machine (STS HM) interface, (2) STS via human to human (STS HH) contact and (3) home telemonitoring (TM), compared with (4) usual care. Main outcome measures The incremental cost per quality-adjusted life year (QALY) gained by each strategy compared to the next most effective alternative and the probability of each strategy being cost-effective at varying willingness to pay per QALY gained. Results TM was the most cost-effective strategy in the scenario using these base case costs. Compared with usual care, TM had an estimated incremental cost effectiveness ratio (ICER) of £11 873/QALY, whereas STS HH had an ICER of £228 035/QALY against TM. STS HM was dominated by usual care. Threshold analysis suggested that the monthly cost of TM has to be higher than £390 to have an ICER greater than £20 000/QALY against STS HH. Scenario analyses performed using higher costs of usual care, higher costs of STS HH and lower costs of TM do not substantially change the conclusions. Conclusions Cost-effectiveness analyses suggest that TM was an optimal strategy in most scenarios, but there is considerable uncertainty in relation to clear descriptions of the interventions and robust estimation of costs

    Resolving the Submillimeter Background: the 850-micron Galaxy Counts

    Get PDF
    Recent deep blank field submillimeter surveys have revealed a population of luminous high redshift galaxies that emit most of their energy in the submillimeter. The results suggest that much of the star formation at high redshift may be hidden to optical observations. In this paper we present wide-area 850-micron SCUBA data on the Hawaii Survey Fields SSA13, SSA17, and SSA22. Combining these new data with our previous deep field data, we establish the 850-micron galaxy counts from 2 mJy to 10 mJy with a >3-sigma detection limit. The area coverage is 104 square arcmin to 8 mJy and 7.7 square arcmin to 2.3 mJy. The differential 850-micron counts are well described by the function n(S)=N_0/(a+S^3.2), where S is the flux in mJy, N_0=3.0 x 10^4 per square degree per mJy, and a=0.4-1.0 is chosen to match the 850-micron extragalactic background light. Between 20 to 30 per cent of the 850-micron background resides in sources brighter than 2 mJy. Using an empirical fit to our >2 mJy data constrained by the EBL at lower fluxes, we argue that the bulk of the 850-micron extragalactic background light resides in sources with fluxes near 1 mJy. The submillimeter sources are plausible progenitors of the present-day spheroidal population.Comment: 5 pages, accepted by The Astrophysical Journal Letter

    Cosmological Implications of the Very High Redshift GRB 050904

    Get PDF
    We report near simultaneous multi-color (RIYJHK) observations made with the MAGNUM 2m telescope of the gamma ray burst GRB 050904 detected by the SWIFT satellite. The spectral energy distribution shows a very large break between the I and J bands. Using intergalactic transmissions measured from high redshift quasars we show that the observations place a 95% confidence lower limit of z=6.18 on the object, consistent with a later measured spectroscopic redshift of 6.29 obtained by Kawai et al. (2005) with the Subaru telescope. We show that the break strength in the R and I bands is consistent with that measured in the quasars. Finally we consider the implications for the star formation history at high redshift.Comment: Accepted for publication in the Astrophysical Journal. Expanded introduction and discussio

    Dusty star forming galaxies at high redshift

    Get PDF
    The global star formation rate in high redshift galaxies, based on optical surveys, shows a strong peak at a redshift of z=1.5, which implies that we have already seen most of the formation. High redshift galaxies may, however, emit most of their energy at submillimeter wavelengths if they contain substantial amounts of dust. The dust would absorb the starlight and reradiate it as far-infrared light, which would be redshifted to the submillimeter range. Here we report a deep survey of two blank regions of sky performed at submillimeter wavelengths (450 and 850-micron). If the sources we detect in the 850-micron band are powered by star formation, then each must be converting more than 100 solar masses of gas per year into stars, which is larger than the maximum star formation rates inferred for most optically-selected galaxies. The total amount of high redshift star formation is essentially fixed by the level of background light, but where the peak occurs in redshift for the submillimeter is not yet established. However, the background light contribution from only the sources detected at 850-micron is already comparable to that from the optically-selected sources. Establishing the main epoch of star formation will therefore require a combination of optical and submillimeter studies.Comment: 10 pages + 2 Postscript figures, under embargo at Natur
    • …
    corecore