22 research outputs found

    Women in circuits and systems (WiCAS) and young professionals (YP) at ICECS 2020.

    Get PDF
    A 'Women in Circuits and Systems' (WiCAS) event and a 'Young Professionals' (YP) event took place during the 27th Institute of Electrical and Electronics Engineers (IEEE) International conference on electronics circuits and systems (ICECS), the flagship conference for the Region 8 of the IEEE Circuits and Systems Society (CASS). The WiCAS events traditionally aim to inspire and motivate both students and young professionals in the domain of circuits and systems to have efficient roles in their professions, by meeting successful female engineers and professors, through interesting technical and professional talks in fields of interest of CASS. The YP events usually include start-ups presentation, poster and demo sessions, aiming to provide a thrilling environment for early career researchers to present their work. Joining this event, young professionals have the opportunity to learn about state of the art and most advanced activities in the area of circuits and systems, meet and interact with their peers, receive feedback from internationally well-known experts in the CASS domain from both academia and industry

    Decision Making by a Neuromorphic Network of Volatile Resistive Switching Memories

    Full text link
    The necessity of having an electronic device working in relevant biological time scales with a small footprint boosted the research of a new class of emerging memories. Ag-based volatile resistive switching memories (RRAMs) feature a spontaneous change of device conductance with a similarity to biological mechanisms. They rely on the formation and self-disruption of a metallic conductive filament through an oxide layer, with a retention time ranging from a few milliseconds to several seconds, greatly tunable according to the maximum current which is flowing through the device. Here we prove a neuromorphic system based on volatile-RRAMs able to mimic the principles of biological decision-making behavior and tackle the Two-Alternative Forced Choice problem, where a subject is asked to make a choice between two possible alternatives not relying on a precise knowledge of the problem, rather on noisy perceptions

    Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning

    Get PDF
    Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e. the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity). This implies a device able to change its resistance (synaptic strength, or weight) upon proper electrical stimuli (synaptic activity) and showing several stable resistive states throughout its dynamic range (analog behavior). Moreover, it should be able to perform spike timing dependent plasticity (STDP), an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy characters are displayed and it is robust to a device-to-device variability of up to +/-30%

    A Ferroelectric Tunnel Junction-based Integrate-and-Fire Neuron

    Full text link
    Event-based neuromorphic systems provide a low-power solution by using artificial neurons and synapses to process data asynchronously in the form of spikes. Ferroelectric Tunnel Junctions (FTJs) are ultra low-power memory devices and are well-suited to be integrated in these systems. Here, we present a hybrid FTJ-CMOS Integrate-and-Fire neuron which constitutes a fundamental building block for new-generation neuromorphic networks for edge computing. We demonstrate electrically tunable neural dynamics achievable by tuning the switching of the FTJ device

    A 120dB Programmable-Range On-Chip Pulse Generator for Characterizing Ferroelectric Devices

    Full text link
    Novel non-volatile memory devices based on ferroelectric thin films represent a promising emerging technology that is ideally suited for neuromorphic applications. The physical switching mechanism in such films is the nucleation and growth of ferroelectric domains. Since this has a strong dependence on both pulse width and voltage amplitude, it is important to use precise pulsing schemes for a thorough characterization of their behavior. In this work, we present an on-chip 120 dB programmable range pulse generator, that can generate pulse widths ranging from 10 ns to 10 ms ± 2.5% which eliminates the RLC bottleneck in the device characterisation setup. We describe the pulse generator design and show how the pulse width can be tuned with high accuracy, using Digital to Analog converters. Finally, we present experimental results measured from the circuit, fabricated using a standard 180 nm CMOS technology

    Adaptive extreme edge computing for wearable devices

    Get PDF
    Wearable devices are a fast-growing technology with impact on personal healthcare for both society and economy. Due to the widespread of sensors in pervasive and distributed networks, power consumption, processing speed, and system adaptation are vital in future smart wearable devices. The visioning and forecasting of how to bring computation to the edge in smart sensors have already begun, with an aspiration to provide adaptive extreme edge computing. Here, we provide a holistic view of hardware and theoretical solutions towards smart wearable devices that can provide guidance to research in this pervasive computing era. We propose various solutions for biologically plausible models for continual learning in neuromorphic computing technologies for wearable sensors. To envision this concept, we provide a systematic outline in which prospective low power and low latency scenarios of wearable sensors in neuromorphic platforms are expected. We successively describe vital potential landscapes of neuromorphic processors exploiting complementary metal-oxide semiconductors (CMOS) and emerging memory technologies (e.g. memristive devices). Furthermore, we evaluate the requirements for edge computing within wearable devices in terms of footprint, power consumption, latency, and data size. We additionally investigate the challenges beyond neuromorphic computing hardware, algorithms and devices that could impede enhancement of adaptive edge computing in smart wearable devices

    Redox memristors with volatile threshold switching behavior for neuromorphic computing

    Get PDF
    The spiking neural network (SNN), closely inspired by the human brain, is one of the most powerful platforms to enable highly efficient, low cost, and robust neuromorphic computations in hardware using traditional or emerging electron devices within an integrated system. In the hardware implementation, the building of artificial spiking neurons is fundamental for constructing the whole system. However, with the slowing down of Moore’s Law, the traditional complementary metal-oxide-semiconductor (CMOS) technology is gradually fading and is unable to meet the growing needs of neuromorphic computing. Besides, the existing artificial neuron circuits are complex owing to the limited bio-plausibility of CMOS devices. Memristors with volatile threshold switching (TS) behaviors and rich dynamics are promising candidates to emulate the biological spiking neurons beyond the CMOS technology and build high-efficient neuromorphic systems. Herein, the state-of-the-art about the fundamental knowledge of SNNs is reviewed. Moreover, we review the implementation of TS memristor-based neurons and their systems, and point out the challenges that should be further considered from devices to circuits in the system demonstrations. We hope that this review could provide clues and be helpful for the future development of neuromorphic computing with memristors
    corecore