40 research outputs found

    Realistic Earth escape strategies for solar sailing

    Get PDF
    With growing interest in solar sailing comes the requirement to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. Previously unexplained seasonal variations in sail escape times from Earth orbit are explained analytically and corroborated within a numerical trajectory model. Blended-sail control algorithms, explicitly independent of time, which providenear-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller, are then presented. These algorithms are investigated from a range of initial conditions and are shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the minimum sail characteristic acceleration required for escape from a polar orbit without traversing the Earth shadow cone increases exponentially as initial altitude is decreased

    Aperture, A Large Telescope Using Magnetostriction For Post Deployment Corrections: Final Technical Report of NASA Innovative Advanced Concepts (NIAC) Phase I

    Get PDF
    In summary, astronomical as well as Earth observing applications of the future are counting on larger aperture telescopes than are currently available. Several groups have been working on the topic of enabling large (about 16-m diameter) UV-Vis telescopes for many years. The unique feature of our concept is that magnetic films are used rather than electrostatic films or piezo-electrostatic pads. Our magnetic film concept allows for contiguous correction along the surface, does not require a hard wire connection, and does not require continuous external application of the field. There are many unknowns related to the initial accuracy of the deployed figure prior to the magnetic write head corrections. The length scale over which the corrections need to be applied is also of concern. For, although approximately mm length scale corrections can be made with the MSM plus write head technology, the number of 1 mm patches in a 16 m diameter mirror is too large to contemplate applying individual corrections to each individual patch. However, deployment strategies and the materials available continue to evolve, in particular shape memory composites (SMCs) [34] or alloys (SMAs) [41], such that at this time we see no show-stoppers for this concept. Furthermore, the ability to tune deformations down to much (factors of 10-100) smaller (m) scale opens the futuristic possibility of improving the figure well beyond Strehl values of 90%
    corecore