2,113 research outputs found

    Entanglement combing

    Full text link
    We show that all multi-partite pure states can, under local operations, be transformed into bi-partite pairwise entangled states in a "lossless fashion": An arbitrary distinguished party will keep pairwise entanglement with all other parties after the asymptotic protocol - decorrelating all other parties from each other - in a way that the degree of entanglement of this party with respect to the rest will remain entirely unchanged. The set of possible entanglement distributions of bi-partite pairs is also classified. Finally, we point out several applications of this protocol as a useful primitive in quantum information theory.Comment: 5 pages, 1 figure, replaced with final versio

    Measuring thermodynamic length

    Get PDF
    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information and Rao's entropy differential metric. Therefore, thermodynamic length is of central interest in understanding matter out-of-equilibrium. In this paper, we will consider how to define thermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.Comment: 4 pages; Typos correcte

    Generalized Jarzynski Equality under Nonequilibrium Feedback Control

    Full text link
    The Jarzynski equality is generalized to situations in which nonequilibrium systems are subject to a feedback control. The new terms that arise as a consequence of the feedback describe the mutual information content obtained by measurement and the efficacy of the feedback control. Our results lead to a generalized fluctuation-dissipation theorem that reflects the readout information, and can be experimentally tested using small thermodynamic systems. We illustrate our general results by an introducing "information ratchet," which can transport a Brownian particle in one direction and extract a positive work from the particle

    Entropy measures for complex networks: Toward an information theory of complex topologies

    Full text link
    The quantification of the complexity of networks is, today, a fundamental problem in the physics of complex systems. A possible roadmap to solve the problem is via extending key concepts of information theory to networks. In this paper we propose how to define the Shannon entropy of a network ensemble and how it relates to the Gibbs and von Neumann entropies of network ensembles. The quantities we introduce here will play a crucial role for the formulation of null models of networks through maximum-entropy arguments and will contribute to inference problems emerging in the field of complex networks.Comment: (4 pages, 1 figure

    Interpreting quantum discord through quantum state merging

    Full text link
    We present an operational interpretation of quantum discord based on the quantum state merging protocol. Quantum discord is the markup in the cost of quantum communication in the process of quantum state merging, if one discards relevant prior information. Our interpretation has an intuitive explanation based on the strong subadditivity of von Neumann entropy. We use our result to provide operational interpretations of other quantities like the local purity and quantum deficit. Finally, we discuss in brief some instances where our interpretation is valid in the single copy scenario.Comment: 5 pages, no figures. See http://arxiv.org/abs/1008.3205 for similar results. Typos fixed, references and acknowledgements updated. End note adde

    Modeling Maxwell's demon with a microcanonical Szilard engine

    Full text link
    Following recent work by Marathe and Parrondo [PRL, 104, 245704 (2010)], we construct a classical Hamiltonian system whose energy is reduced during the adiabatic cycling of external parameters, when initial conditions are sampled microcanonically. Combining our system with a device that measures its energy, we propose a cyclic procedure during which energy is extracted from a heat bath and converted to work, in apparent violation of the second law of thermodynamics. This paradox is resolved by deriving an explicit relationship between the average work delivered during one cycle of operation, and the average information gained when measuring the system's energy

    Is a multiple excitation of a single atom equivalent to a single excitation of an ensemble of atoms?

    Full text link
    Recent technological advances have enabled to isolate, control and measure the properties of a single atom, leading to the possibility to perform statistics on the behavior of single quantum systems. These experiments have enabled to check a question which was out of reach previously: Is the statistics of a repeatedly excitation of an atom N times equivalent to a single excitation of an ensemble of N atoms? We present a new method to analyze quantum measurements which leads to the postulation that the answer is most probably no. We discuss the merits of the analysis and its conclusion.Comment: 3 pages, 3 figure

    Entropic Entanglement Criteria for Continuous Variables

    Full text link
    We derive several entanglement criteria for bipartite continuous variable quantum systems based on the Shannon entropy. These criteria are more sensitive than those involving only second-order moments, and are equivalent to well-known variance product tests in the case of Gaussian states. Furthermore, they involve only a pair of quadrature measurements, and will thus should prove extremely useful the experimental identification of entanglement.Comment: 4 pages, 2 figure

    Reversibility, heat dissipation and the importance of the thermal environment in stochastic models of nonequilibrium steady states

    Full text link
    We examine stochastic processes that are used to model nonequilibrium processes (e.g, pulling RNA or dragging colloids) and so deliberately violate detailed balance. We argue that by combining an information-theoretic measure of irreversibility with nonequilibrium work theorems, the thermal physics implied by abstract dynamics can be determined. This measure is bounded above by thermodynamic entropy production and so may quantify how well a stochastic dynamics models reality. We also use our findings to critique various modeling approaches and notions arising in steady-state thermodynamics.Comment: 8 pages, 2 figures, easy-to-read, single-column, large-print RevTeX4 format; version with modified abstract and additional discussion, references to appear in Phys Rev Let
    • …
    corecore