24 research outputs found

    AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment

    No full text
    1.The cost, usability and power efficiency of available wildlife monitoring equipment currently inhibits full ground-level coverage of many natural systems. Developments over the last decade in technology, open science, and the sharing economy promise to bring global access to more versatile and more affordable monitoring tools, to improve coverage for conservation researchers and managers. 2.Here we describe the development and proof-of-concept of a low-cost, small-sized and low-energy acoustic detector: ‘AudioMoth’. The device is open-source and programmable, with diverse applications for recording animal calls or human activity at sample rates of up to 384 kHz. We briefly outline two ongoing real-world case studies of large-scale, long-term monitoring for biodiversity and exploitation of natural resources. These studies demonstrate the potential for AudioMoth to enable a substantial shift away from passive continuous recording by individual devices, towards smart detection by networks of devices flooding large and inaccessible ecosystems. 3.The case studies demonstrate one of the smart capabilities of AudioMoth, to trigger event logging on the basis of classification algorithms that identify specific acoustic events. An algorithm to trigger recordings of the New Forest cicada (Cicadetta montana) demonstrates the potential for AudioMoth to vastly improve the spatial and temporal coverage of surveys for the presence of cryptic animals. An algorithm for logging gunshot events has potential to identify a shotgun blast in tropical rainforest at distances of up to 500 m, extending to 1 km with continuous recording. 4.AudioMoth is more energy efficient than currently available passive acoustic monitoring (PAM) devices, giving it considerably greater portability and longevity in the field with smaller batteries. At a build cost of ~US$43 per unit, AudioMoth has potential for varied applications in large-scale, long-term acoustic surveys. With continuing developments in smart, energy-efficient algorithms and diminishing component costs, we are approaching the milestone of local communities being able to afford to remotely monitor their own natural resources.</p

    α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming.

    No full text
    Glutamine metabolism provides synergistic support for macrophage activation and elicitation of desirable immune responses; however, the underlying mechanisms regulated by glutamine metabolism to orchestrate macrophage activation remain unclear. Here we show that the production of α-ketoglutarate (αKG) via glutaminolysis is important for alternative (M2) activation of macrophages, including engagement of fatty acid oxidation (FAO) and Jmjd3-dependent epigenetic reprogramming of M2 genes. This M2-promoting mechanism is further modulated by a high αKG/succinate ratio, whereas a low ratio strengthens the proinflammatory phenotype in classically activated (M1) macrophages. As such, αKG contributes to endotoxin tolerance after M1 activation. This study reveals new mechanistic regulations by which glutamine metabolism tailors the immune responses of macrophages through metabolic and epigenetic reprogramming
    corecore