173 research outputs found
Exploring classically chaotic potentials with a matter wave quantum probe
We study an experimental setup in which a quantum probe, provided by a
quasi-monomode guided atom laser, interacts with a static localized attractive
potential whose characteristic parameters are tunable. In this system,
classical mechanics predicts a transition from a regular to a chaotic behavior
as a result of the coupling between the longitudinal and transverse degrees of
freedom. Our experimental results display a clear signature of this transition.
On the basis of extensive numerical simulations, we discuss the quantum versus
classical physics predictions in this context. This system opens new
possibilities for investigating quantum scattering, provides a new testing
ground for classical and quantum chaos and enables to revisit the
quantum-classical correspondence
Fast transport of Bose-Einstein condensates
We propose an inverse method to accelerate without final excitation the
adiabatic transport of a Bose Einstein condensate. The method, applicable to
arbitrary potential traps, is based on a partial extension of the
Lewis-Riesenfeld invariants, and provides transport protocols that satisfy
exactly the no-excitation conditions without constraints or approximations.
This inverse method is complemented by optimizing the trap trajectory with
respect to different physical criteria and by studying the effect of noise
Transport of Atom Packets in a Train of Ioffe-Pritchard Traps
We demonstrate transport and evaporative cooling of several atomic clouds in
a chain of magnetic Ioffe-Pritchard traps moving at a low speed (~m/s). The
trapping scheme relies on the use of a magnetic guide for transverse
confinement and of magnets fixed on a conveyor belt for longitudinal trapping.
This experiment introduces a new approach for parallelizing the production of
Bose-Einstein condensates as well as for the realization of a continuous atom
laser
Continuous atom laser with Bose-Einstein condensates involving three-body interactions
We demonstrate, through numerical simulations, the emission of a coherent
continuous matter wave of constant amplitude from a Bose-Einstein Condensate in
a shallow optical dipole trap. The process is achieved by spatial control of
the variations of the scattering length along the trapping axis, including
elastic three body interactions due to dipole interactions. In our approach,
the outcoupling mechanism are atomic interactions and thus, the trap remains
unaltered. We calculate analytically the parameters for the experimental
implementation of this CW atom laser.Comment: 11 pages, 4 figure
A quasi-monomode guided atom-laser from an all-optical Bose-Einstein condensate
We report the achievement of an optically guided and quasi-monomode atom
laser, in all spin projection states ( -1, 0 and ) of F=1 in
Rubidium 87. The atom laser source is a Bose-Einstein condensate (BEC) in a
crossed dipole trap, purified to any one spin projection state by a
spin-distillation process applied during the evaporation to BEC. The atom laser
is outcoupled by an inhomogenous magnetic field, applied along the waveguide
axis. The mean excitation number in the transverse modes is for and for the low field seeker
From multimode to monomode guided atom lasers: an entropic analysis
We have experimentally demonstrated a high level of control of the mode
populations of guided atom lasers (GALs) by showing that the entropy per
particle of an optically GAL, and the one of the trapped Bose Einstein
condensate (BEC) from which it has been produced are the same. The BEC is
prepared in a crossed beam optical dipole trap. We have achieved isentropic
outcoupling for both magnetic and optical schemes. We can prepare GAL in a
nearly pure monomode regime (85 % in the ground state). Furthermore, optical
outcoupling enables the production of spinor guided atom lasers and opens the
possibility to tailor their polarization
Optimal transport of ultracold atoms in the non-adiabatic regime
We report the transport of ultracold atoms with optical tweezers in the
non-adiabatic regime, i.e. on a time scale on the order of the oscillation
period. We have found a set of discrete transport durations for which the
transport is not accompanied by any excitation of the centre of mass of the
cloud. We show that the residual amplitude of oscillation of the dipole mode is
given by the Fourier transform of the velocity profile imposed to the trap for
the transport. This formalism leads to a simple interpretation of our data and
simple methods for optimizing trapped particles displacement in the
non-adiabatic regime
Transport and interaction blockade of cold bosonic atoms in a triple-well potential
We theoretically investigate the transport properties of cold bosonic atoms
in a quasi one-dimensional triple-well potential that consists of two large
outer wells, which act as microscopic source and drain reservoirs, and a small
inner well, which represents a quantum-dot-like scattering region. Bias and
gate "voltages" introduce a time-dependent tilt of the triple-well
configuration, and are used to shift the energetic level of the inner well with
respect to the outer ones. By means of exact diagonalization considering a
total number of six atoms in the triple-well potential, we find diamond-like
structures for the occurrence of single-atom transport in the parameter space
spanned by the bias and gate voltages. We discuss the analogy with Coulomb
blockade in electronic quantum dots, and point out how one can infer the
interaction energy in the central well from the distance between the diamonds.Comment: 18 pages, 6 figure
Control and Manipulation of Cold Atoms in Optical Tweezers
Neutral atoms trapped by laser light are amongst the most promising
candidates for storing and processing information in a quantum computer or
simulator. The application certainly calls for a scalable and flexible scheme
for addressing and manipulating the atoms. We have now made this a reality by
implementing a fast and versatile method to dynamically control the position of
neutral atoms trapped in optical tweezers. The tweezers result from a spatial
light modulator (SLM) controlling and shaping a large number of optical
dipole-force traps. Trapped atoms adapt to any change in the potential
landscape, such that one can re-arrange and randomly access individual sites
within atom-trap arrays.Comment: 6 pages, 4 figure
Long range transport of ultra cold atoms in a far-detuned 1D optical lattice
We present a novel method to transport ultra cold atoms in a focused optical
lattice over macroscopic distances of many Rayleigh ranges. With this method
ultra cold atoms were transported over 5 cm in 250 ms without significant atom
loss or heating. By translating the interference pattern together with the beam
geometry the trap parameters are maintained over the full transport range.
Thus, the presented method is well suited for tightly focused optical lattices
that have sufficient trap depth only close to the focus. Tight focusing is
usually required for far-detuned optical traps or traps that require high laser
intensity for other reasons. The transport time is short and thus compatible
with the operation of an optical lattice clock in which atoms are probed in a
well designed environment spatially separated from the preparation and
detection region.Comment: 14 pages, 6 figure
- …