1,699 research outputs found
Website Barriers to Employment for People with Disabilities
This study involves an analysis of the web content of 30 award winning companies regarding diversity and perceived company openness to employing people with disabilities. The results are mixed: some websites appear designed with disabilities in mind while others reveal constraints to website job access which in turn can result in underemployment and talent underutilization of people with disabilities. Based upon these findings, the authors discuss and make recommendations to optimize website designs that welcome people with disabilities
Extracting W Boson Couplings from the Production of Four Leptons
We consider the processes , including all possible charged lepton combinations, with
regard to measuring parameters characterizing the boson. We calculate at
what level these processes can be used to measure anamolous triple-boson
vertice coupling parameters for the cases of colliders at 500
and 1 center of mass energies.Comment: 13 pages,OCIP/C-93-
The Yang-Baxter equation for PT invariant nineteen vertex models
We study the solutions of the Yang-Baxter equation associated to nineteen
vertex models invariant by the parity-time symmetry from the perspective of
algebraic geometry. We determine the form of the algebraic curves constraining
the respective Boltzmann weights and found that they possess a universal
structure. This allows us to classify the integrable manifolds in four
different families reproducing three known models besides uncovering a novel
nineteen vertex model in a unified way. The introduction of the spectral
parameter on the weights is made via the parameterization of the fundamental
algebraic curve which is a conic. The diagonalization of the transfer matrix of
the new vertex model and its thermodynamic limit properties are discussed. We
point out a connection between the form of the main curve and the nature of the
excitations of the corresponding spin-1 chains.Comment: 43 pages, 6 figures and 5 table
Applying dissipative dynamical systems to pseudorandom number generation: Equidistribution property and statistical independence of bits at distances up to logarithm of mesh size
The behavior of a family of dissipative dynamical systems representing
transformations of two-dimensional torus is studied on a discrete lattice and
compared with that of conservative hyperbolic automorphisms of the torus.
Applying dissipative dynamical systems to generation of pseudorandom numbers is
shown to be advantageous and equidistribution of probabilities for the
sequences of bits can be achieved. A new algorithm for generating uniform
pseudorandom numbers is proposed. The theory of the generator, which includes
proofs of periodic properties and of statistical independence of bits at
distances up to logarithm of mesh size, is presented. Extensive statistical
testing using available test packages demonstrates excellent results, while the
speed of the generator is comparable to other modern generators.Comment: 6 pages, 3 figures, 3 table
Generating-function method for tensor products
This is the first of two articles devoted to a exposition of the
generating-function method for computing fusion rules in affine Lie algebras.
The present paper is entirely devoted to the study of the tensor-product
(infinite-level) limit of fusions rules.
We start by reviewing Sharp's character method. An alternative approach to
the construction of tensor-product generating functions is then presented which
overcomes most of the technical difficulties associated with the character
method. It is based on the reformulation of the problem of calculating tensor
products in terms of the solution of a set of linear and homogeneous
Diophantine equations whose elementary solutions represent ``elementary
couplings''. Grobner bases provide a tool for generating the complete set of
relations between elementary couplings and, most importantly, as an algorithm
for specifying a complete, compatible set of ``forbidden couplings''.Comment: Harvmac (b mode : 39 p) and Pictex; this is a substantially reduced
version of hep-th/9811113 (with new title); to appear in J. Math. Phy
Exact two-spinon dynamical correlation function of the Heisenberg model
We derive the exact contribution of two spinons to the dynamical correlation
function of the spin-1/2 Heisenberg model. For this, we use the isotropic
limits of the exact form factors that have been recently computed through the
quantum affine symmetry of the anisotropic Heisenberg model Comment: 9 pages, Latex, 2 corrections of coefficient
The Ni(n,) cross section measured with DANCE
The neutron capture cross section of the s-process branch nucleus Ni
affects the abundances of other nuclei in its region, especially Cu and
Zn. In order to determine the energy dependent neutron capture cross
section in the astrophysical energy region, an experiment at the Los Alamos
National Laboratory has been performed using the calorimetric 4 BaF
array DANCE. The (n,) cross section of Ni has been determined
relative to the well known Au standard with uncertainties below 15%.
Various Ni resonances have been identified based on the Q-value.
Furthermore, the s-process sensitivity of the new values was analyzed with the
new network calculation tool NETZ.Comment: 11 pages, 13 page
Direct measurements of neutron capture on radioactive isotopes
We simulated the response of a 4p calorimetric g-detector array to decays of
radioactive isotopes on the s-process path. The GEANT 3.21 simulation package
was used. The main table contains estimates on the maximum sample size and
required neutron flux based on the latest available neutron capture cross
section at 30 keV. The results are intended to be used to estimate the
feasibility of neutron capture measurements with 4p arrays using the time of
flight technique
Ultracold Neutron Production in a Pulsed Neutron Beam Line
We present the results of an Ultracold neutron (UCN) production experiment in
a pulsed neutron beam line at the Los Alamos Neutron Scattering Center. The
experimental apparatus allows for a comprehensive set of measurements of UCN
production as a function of target temperature, incident neutron energy, target
volume, and applied magnetic field. However, the low counting statistics of the
UCN signal expected can be overwhelmed by the large background associated with
the scattering of the primary cold neutron flux that is required for UCN
production. We have developed a background subtraction technique that takes
advantage of the very different time-of-flight profiles between the UCN and the
cold neutrons, in the pulsed beam. Using the unique timing structure, we can
reliably extract the UCN signal. Solid ortho-D is used to calibrate UCN
transmission through the apparatus, which is designed primarily for studies of
UCN production in solid O. In addition to setting the overall detection
efficiency in the apparatus, UCN production data using solid D suggest that
the UCN upscattering cross-section is smaller than previous estimates,
indicating the deficiency of the incoherent approximation widely used to
estimate inelastic cross-sections in the thermal and cold regimes
- …