4 research outputs found

    Establishing ZIF-8 as a reference material for hydrogen cryoadsorption: An interlaboratory study

    Get PDF
    Hydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal-organic framework ZIF-8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF-8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3–4 % between pressures of 10–100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF-8 pellets, which we want to propose as a reference material.M. Maiwald, J. A. Villajos, R. Balderas and M. Hirscher acknowledge the EMPIR programme from the European Union's Horizon 2020 research and innovation programme for funding. F. Cuevas and F. Couturas acknowledge support from France 2030 program under project ANR-22-PEHY-0007. D. Cazorla and A. Berenguer-Murcia thank the support by PID2021-123079OB-I00 project funded by MCIN/AEI/10.13039/501100011033, and “ERDF A way of making Europe”. K. N. Heinselman, S. Shulda and P. A. Parilla acknowledge the support from the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technology Office through the HyMARC Energy Materials Network

    Magnetic, structural and magnetocaloric properties of Y0.9Gd0.1Fe2Hx hydrides

    No full text
    International audienceAt 300 K, Y0.9Gd0.1Fe2Hx hydrides crystallize sequentially with increasing H concentration in various structures related to a lowering of the cubic MgCu2 type structure of the parent alloy: cubic C1, monoclinic M1, cubic C2, monoclinic M2, cubic C3, orthorhombic O. Above 300 K, they undergo a first-order transition at a TO-D temperature driven by order-disorder of hydrogen atoms into interstitial sites. Their magnetic, structural and magnetocaloric properties have been investigated through magnetic measurements, and high-resolution synchrotron diffraction experiments. The magnetization at 5 K decreases slightly from 4 to 3.8 ÎŒB for x = 3–3.9 H/f.u., then with a larger slope for higher H content. A discontinuous decrease of the magnetic transition temperature is observed: M1 and C2 hydrides are ferrimagnetic with TC near 300 K, M2 hydride displays a sharp ferromagnetic-antiferromagnetic transition at TFM-AFM = 144 K, whereas C3 and O hydrides present only a sharp increase of the magnetization below 15 K and a weak magnetization up to room temperature. Negative magnetic entropy variations (ΔSM) are measured near TC for the M1 and C2 phases, near TFM-AFM for the M2 phase, whereas positive ΔSM peaks due to inverse MCE effect are found near TO-D. A structural and magnetic phase diagram is proposed

    Phase diagram and order-disorder transitions in Y0.9Gd0.1Fe2Hx hydrides (x ≄ 2.9)

    No full text
    International audienceY0.9Gd0.1Fe2, which crystallize in a C15 cubic structure, can absorb up to 5 H/f.u. and its pressure-composition isotherm displays a multiplateau behavior related to the existence of several hydrides with different crystal structures. At room temperature Y0.9Gd0.1Fe2Hx hydrides (2.9 ≀ x ≀ 5) crystallize in three phases with cubic structure (C1, C2 and C3), two phases with monoclinic structures (M1 and M2), and one phase with orthorhombic structure (O), with the following sequence for increasing H concentration: C1, M1, C2, M2, C3, O. Each phase exists as single phase within a H homogeneity range, and they are separated from each other by two-phase domains. The reductions of crystal symmetry are related to various hydrogen orders into interstitial sites. Weak superstructure peaks were indexed by doubling the cubic cell parameter of the cubic C2 phase. Upon heating, the monoclinic M1 and M2 and the cubic C2 phases undergo order-disorder (O-D) transitions toward a disordered cubic structure CDis. These O-D transitions are reversible with thermal hysteresis effects. The cubic C3 and orthorhombic O phases transform into a disordered cubic phasecompanied by H desorption
    corecore