5 research outputs found

    Microwave Observations of Venus with CLASS

    Full text link
    We report on the disk-averaged absolute brightness temperatures of Venus measured at four microwave frequency bands with the Cosmology Large Angular Scale Surveyor (CLASS). We measure temperatures of 432.3 ±\pm 2.8 K, 355.6 ±\pm 1.3 K, 317.9 ±\pm 1.7 K, and 294.7 ±\pm 1.9 K for frequency bands centered at 38.8, 93.7, 147.9, and 217.5 GHz, respectively. We do not observe any dependence of the measured brightness temperatures on solar illumination for all four frequency bands. A joint analysis of our measurements with lower frequency Very Large Array (VLA) observations suggests relatively warmer (∼\sim 7 K higher) mean atmospheric temperatures and lower abundances of microwave continuum absorbers than those inferred from prior radio occultation measurements.Comment: 10 pages, 3 figures, published in PS

    Venus Observations at 40 and 90 GHz with CLASS

    Full text link
    Using the Cosmology Large Angular Scale Surveyor, we measure the disk-averaged absolute Venus brightness temperature to be 432.3 ±\pm 2.8 K and 355.6 ±\pm 1.3 K in the Q and W frequency bands centered at 38.8 and 93.7 GHz, respectively. At both frequency bands, these are the most precise measurements to date. Furthermore, we observe no phase dependence of the measured temperature in either band. Our measurements are consistent with a CO2_2-dominant atmospheric model that includes trace amounts of additional absorbers like SO2_2 and H2_2SO4_4.Comment: 7 pages, 3 figures, published in PS

    Exploring the universality of the alternating conductivity of disordered materials using the Gaussian distribution of activation energies.

    No full text
    This paper presents a newapproach for the analysis of ACconductivity, s*(w)= s?(w)?+?is?(w), in disordered solids which brings together the quasi-universal frequency-dependent conductivity and the idea of a Gaussian distributions of probable activation energy barriers for hopping carriers. An explicit expression forAC conductivity was obtained using a complex dielectric response function and a continuous time random walk treatment applied to a lattice obeying the Kubo?s fluctuationdissipation theorem. This expression provides an insight into the universality of the form s?(w) ? ws (0 ? s ? 1) and s?(w) ? kw (k is the dielectric constant), aswell into the effect of the Gaussian disorder on exponent s.We discuss the similarities and differences with the Random Free Energy Barrier model equivalent to the long-used box model, and it brings support to an extending expression proposed by JCDyre and one of the authors. The applicability of the model to experimental observations on poly[(2-methoxy-5-hexyloxy)-p-phenylenevinylene] reveals the dielectric constant, mean energy and variance of the Gaussian distribution for hopping carriers in this disordered conjugated polymer

    Calibration of TES bolometer arrays with application to CLASS

    Full text link
    Current and future cosmic microwave background (CMB) experiments fielding kilo-pixel arrays of transition-edge sensor (TES) bolometers require accurate and robust gain calibration methods. We simplify and refactor the standard TES model to directly relate the detector responsivity calibration and optical time constant to the measured TES current II and the applied bias current IbI_{\mathrm{b}}. The calibration method developed for the Cosmology Large Angular Scale Surveyor (CLASS) TES bolometer arrays relies on current versus voltage (II-VV) measurements acquired daily prior to CMB observations. By binning Q-band (40GHz) II-VV measurements by optical loading, we find that the gain calibration median standard error within a bin is 0.3%. We test the accuracy of this "II-VV bin" detector calibration method by using the Moon as a photometric standard. The ratio of measured Moon amplitudes between detector pairs sharing the same feedhorn indicates a TES calibration error of 0.5%. We also find that for the CLASS Q-band TES array, calibrating the response of individual detectors based solely on the applied TES bias current accurately corrects TES gain variations across time but introduces a bias in the TES calibration from data counts to power units. Since the TES current bias value is set and recorded before every observation, this calibration method can always be applied to raw TES data and is not subject to II-VV data quality or processing errors.Comment: 18 pages, 7 figures, 5 tables. Submitted to ApJS May 202

    Four-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 GHz Frequency Bands

    No full text
    The Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1∘≲θ≤^\circ \lesssim \theta \leq 90∘^\circ with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic G-band (150/220 GHz) receivers that have been operational at the CLASS site in the Atacama desert since June 2016, May 2018, and September 2019, respectively. We show that the noise-equivalent power measured by the detectors matches the expected noise model based on on-sky optical loading and lab-measured detector parameters. Using Moon, Venus, and Jupiter observations, we obtain power-to-antenna-temperature calibrations and optical efficiencies for the telescopes. From the CMB survey data, we compute instantaneous array noise-equivalent-temperature sensitivities of 22, 19, 23, and 71 μKcmbs\mathrm{\mu K}_\mathrm{cmb}\sqrt{\mathrm{s}} for the 40, 90, 150, and 220 GHz frequency bands, respectively. These noise temperatures refer to white noise amplitudes, which contribute to sky maps at all angular scales. Future papers will assess additional noise sources impacting larger angular scales.Comment: 13 pages, 3 figures, published in Ap
    corecore