52 research outputs found

    Effects of Non-Sinusoidal Motion and Effective Angle of Attack on Energy Extraction Performance of a Fully- Activated Flapping Foil

    Get PDF
    Flapping foil energy harvesting systems are considered as highly competitive devices for conventional turbines. Several research projects have already been carried out to improve performances of such new devices. This paper is devoted to study effects of non-sinusoidal heaving trajectory, non-sinusoidal pitching trajectory, and the effective angle of attack on the energy extraction performances of a flapping foil operating at low Reynolds number (Re=1100). An elliptic function with an adjustable parameter S (flattening parameter) is used to simulate various sinusoidal and non-sinusoidal flapping trajectories. The flow around the flapping foil is simulated by solving Navier–Stokes equations using the commercial software Star CCM+ based on the finite-volume method. Overset mesh technique is used to model the flapping motion. The study is applied to the NACA0015 foil with the following kinetic parameters: a dimensionless heaving amplitude h0 = 1c, a shift angle between heaving and pitching motions f = 90 , a reduced frequency f = 0:14, and an effective angle of attack amax varying between 15 and 50 , corresponding to a pitching amplitude in the range q0 = 55:51 to 90:51 . The results show that, the non-sinusoidal trajectory affects considerably the energy extraction performances. For the reference case (sinusoidal heaving and pitching motions, Sh = Sq = 1), best performances are obtained for the effective angle of attack, amax = 40 . At small effective angle of attack amax 40 ), non-sinusoidal pitching motion has a negative effect. Performance improvement is quite limited with the combined motions non-sinusoidal heaving/sinusoidal pitching

    Foscan® (mTHPC) photosensitized macrophage activation: enhancement of phagocytosis, nitric oxide release and tumour necrosis factor-α-mediated cytolytic activity

    Get PDF
    Photodynamic activation of macrophage-like cells contributes to an effective outcome of photodynamic therapy (PDT) treatment. The possibility for an enhancement of macrophage activity by photosensitization with meta-tetra(hydroxyphenyl)chlorin (mTHPC) (1 μg ml−1) was studied in U937, monocyte cell line differentiated into macrophages (U937Φ cells). Phagocytic activity of U937Φ cells was evaluated by flow-cytometry monitoring of ingestion of fluorescein-labelled Escherichia coli particles. Increase in irradiation fluence up to 3.45 mJ cm−2 (corresponding irradiation time 15 s) resulted in significant increase in fluorescence signal (145%), while at higher light fluences the signal lowered down to the untreated control values. A light energy-dependent production of tumour necrosis factor-alpha (TNF-α) by photosensitized macrophages was further demonstrated using the L929 assay. The maximum TNF-α mediated cytolysis was observed at 28 mJ cm−2 and was 1.7-fold greater than that in control. In addition, we demonstrated a fluence-dependent increase in nitric oxide (NO) production by mTHPC-photosensitized macrophages. NO release increased gradually and reached a plateau after irradiation fluence of 6.9 mJ cm−2. Cytotoxicity measurements indicated that the observed manifestations of mTHPC-photosensitized macrophage activation took place under the sublethal light doses. The relevance of the present findings to clinical mTHPC-PDT is discussed. © 1999 Cancer Research Campaig

    Special Issue on the 17th ISROMAC Conference

    No full text

    A cMUT Probe for Ultrasound-Guided Focused Ultrasound Targeted Therapy

    No full text
    International audienceUltrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom
    • …
    corecore