9 research outputs found

    The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

    Get PDF
    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.España, MINECO BFU2015-68216-

    Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas

    Get PDF
    Autophagy is an intracellular catabolic process that allows cells to recycle unneeded or damaged material to maintain cellular homeostasis. This highly dynamic process is characterized by the formation of double-membrane vesicles called autophagosomes, which engulf and deliver the cargo to the vacuole. Flow of material through the autophagy pathway and its degradation in the vacuole is known as autophagic flux, and reflects the autophagic degradation activity. A number of assays have been developed to determine autophagic flux in yeasts, mammals, and plants, but it has not been examined yet in algae. Here we analyzed autophagic flux in the model green alga Chlamydomonas reinhardtii. By monitoring specific autophagy markers such as ATG8 lipidation and using immunofluorescence and electron microscopy techniques, we show that concanamycin A, a vacuolar ATPase inhibitor, blocks autophagic flux in Chlamydomonas. Our results revealed that vacuolar lytic function is needed for the synthesis of triacylglycerols and the formation of lipid bodies in nitrogen- or phosphate-starved cells. Moreover, we found that concanamycin A treatment prevented the degradation of ribosomal proteins RPS6 and RPL37 under nitrogen or phosphate deprivation. These results indicate that autophagy might play an important role in the regulation of lipid metabolism and the recycling of ribosomal proteins under nutrient limitation in ChlamydomonasEspaña, MINECO BFU2015-68216-PEspaña, Junta de Andalucía CVI-7336 (to JLC), BIO2015-74432-JIN (to MEPP

    Efficient Heterologous Transformation of Chlamydomonas reinhardtii npq2 Mutant with the Zeaxanthin Epoxidase Gene Isolated and Characterized from Chlorella zofingiensis

    Get PDF
    In the violaxanthin cycle, the violaxanthin de-epoxidase and zeaxanthin epoxidase catalyze the inter-conversion between violaxanthin and zeaxanthin in both plants and green algae. The zeaxanthin epoxidase gene from the green microalga Chlorella zofingiensis (Czzep) has been isolated. This gene encodes a polypeptide of 596 amino acids. A single copy of Czzep has been found in the C. zofingiensis genome by Southern blot analysis. qPCR analysis has shown that transcript levels of Czzep were increased after zeaxanthin formation under high light conditions. The functionality of Czzep gene by heterologous genetic complementation in the Chlamydomonas mutant npq2, which lacks zeaxanthin epoxidase (ZEP) activity and accumulates zeaxanthin in all conditions, was analyzed. The Czzep gene was adequately inserted in the pSI105 vector and expressed in npq2. The positive transformants were able to efficiently convert zeaxanthin into violaxanthin, as well as to restore their maximum quantum efficiency of the PSII (Fv/Fm). These results show that Chlamydomonas can be an efficient tool for heterologous expression and metabolic engineering for biotechnological applications

    Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets

    Get PDF
    Recuperado de: https://www.biorxiv.org/content/10.1101/310102v1Target of rapamycin (TOR) kinase is a conserved regulator of cell growth whose activity is modulated in response to nutrients, energy and stress. Key proteins involved in the pathway are conserved in the model photosynthetic microalga Chlamydomonas reinhardtii, but the substrates of TOR kinase and downstream signaling network have not been elucidated. Our study provides a new resource for investigating the phosphorylation networks governed by the TOR kinase pathway in Chlamydomonas. We used quantitative phosphoproteomics to investigate the effects of inhibiting Chlamydomonas TOR kinase on dynamic protein phosphorylation. Wild-type and AZD-insensitive Chlamydomonas strains were treated with TOR-specific chemical inhibitors (rapamycin, AZD8055 and Torin1), after which differentially affected phosphosites were identified. Our quantitative phosphoproteomic dataset comprised 2547 unique phosphosites from 1432 different proteins. Inhibition of TOR kinase caused significant quantitative changes in phosphorylation at 258 phosphosites, from 219 unique phosphopeptides. Our results include Chlamydomonas homologs of TOR signaling-related proteins, including a site on RPS6 with a decrease in phosphorylation. Additionally, phosphosites on proteins involved in translation and carotenoid biosynthesis were identified. Follow-up experiments guided by these phosphoproteomic findings in lycopene beta/epsilon cyclase showed that carotenoid levels are affected by TORC1 inhibition and carotenoid production is under TOR control in algae.National Science Foundation CAREER MCB-155252

    Phosphorus Availability Regulates TORC1 Signaling via LST8 in Chlamydomonas

    Get PDF
    Target of rapamycin complex 1 (TORC1) is a central regulator of cell growth. It balances anabolic and catabolic processes in response to nutrients, growth factors, and energy availability. Nitrogen- and carbon-containing metabolites have been shown to activate TORC1 in yeast, animals, and plants. Here, we show that phosphorus (P) regulates TORC1 signaling in the model green alga Chlamydomonas (Chlamydomonas reinhardtii) via LST8, a conserved TORC1 subunit that interacts with the kinase domain of TOR. P starvation results in a sharp decrease in LST8 abundance and downregulation of TORC1 activity. A hypomorphic lst8 mutation resulted in decreased LST8 abundance, and it both reduced TORC1 signaling and altered the cellular response to P starvation. Additionally, we found that LST8 levels and TORC1 activity were not properly regulated in a mutant defective in the transcription factor PSR1, which is the major mediator of P deprivation responses in Chlamydomonas. Unlike wild-type cells, the psr1 mutant failed to downregulate LST8 abundance and TORC1 activity when under P limitation. These results identify PSR1 as an upstream regulator of TORC1 and demonstrate that TORC1 is a key component in P signaling in Chlamydomonas.España Ministerio de Economía y Competitividad (grants BFU2015-68216-P and PGC2018-099048- B-100 to J.L.C. and grant BIO2015-74432-JIN to M.E.P.-P.)National Science Foundation (CAREER award MCB-1552522 to L.M.H. and grant MCB-1616820 to J.G.U.)European Commission (grant number 750996

    Transcriptomic and Metabolomic Response to High Light in the Charophyte Alga Klebsormidium nitens

    Get PDF
    The characterization of the molecular mechanisms, such as high light irradiance resistance, that allowed plant terrestralization is a cornerstone in evolutionary studies since the conquest of land by plants played a pivotal role in life evolution on Earth. Viridiplantae or the green lineage is divided into two clades, Chlorophyta and Streptophyta, that in turn splits into Embryophyta or land plants and Charophyta. Charophyta are used in evolutionary studies on plant terrestralization since they are generally accepted as the extant algal species most closely related to current land plants. In this study, we have chosen the facultative terrestrial early charophyte alga Klebsormidium nitens to perform an integrative transcriptomic and metabolomic analysis under high light in order to unveil key mechanisms involved in the early steps of plants terrestralization. We found a fast chloroplast retrograde signaling possibly mediated by reactive oxygen species and the inositol polyphosphate 1-phosphatase (SAL1) and 3′-phosphoadenosine-5′-phosphate (PAP) pathways inducing gene expression and accumulation of specific metabolites. Systems used by both Chlorophyta and Embryophyta were activated such as the xanthophyll cycle with an accumulation of zeaxanthin and protein folding and repair mechanisms constituted by NADPH-dependent thioredoxin reductases, thioredoxin-disulfide reductases, and peroxiredoxins. Similarly, cyclic electron flow, specifically the pathway dependent on proton gradient regulation 5, was strongly activated under high light. We detected a simultaneous co-activation of the non-photochemical quenching mechanisms based on LHC-like stress related (LHCSR) protein and the photosystem II subunit S that are specific to Chlorophyta and Embryophyta, respectively. Exclusive Embryophyta systems for the synthesis, sensing, and response to the phytohormone auxin were also activated under high light in K. nitens leading to an increase in auxin content with the concomitant accumulation of amino acids such as tryptophan, histidine, and phenylalanine.España Ministerio de Ciencia e Innovación MINOTAUR (BIO2017-84066-R

    CO2 levels modulate carbon utilization, energy levels and inositol polyphosphate profile in Chlorella

    No full text
    Microalgae have a growing recognition of generating biomass and capturing carbon in the form of CO2. The genus Chlorella has especially attracted scientists’ attention due to its versatility in algal mass cultivation systems and its potential in mitigating CO2. However, some aspects of how these green microorganisms respond to increasing concentrations of CO2 remain unclear. In this work, we analyzed Chlorella sorokiniana and Chlorella vulgaris cells under low and high CO2 levels. We monitored different processes related to carbon flux from photosynthetic capacity to carbon sinks. Our data indicate that high concentration of CO2 favors growth and photosynthetic capacity of the two Chlorella strains. Different metabolites related to the tricarboxylic acid cycle and ATP levels also increased under high CO2 concentrations in Chlorella sorokiniana, reaching up to two-fold compared to low CO2 conditions. The signaling molecules, inositol polyphosphates, that regulate photosynthetic capacity in green microalgae were also affected by the CO2 levels, showing a deep profile modification of the inositol polyphosphates that over-accumulated by up to 50% in high CO2 versus low CO2 conditions. InsP4 and InsP6 increased 3- and 0.8-fold, respectively, in Chlorella sorokiniana after being subjected to 5% CO2 condition. These data indicate that the availability of CO2 could control carbon flux from photosynthesis to carbon storage and impact cell signaling integration and energy levels in these green cells. The presented results support the importance of further investigating the connections between carbon assimilation and cell signaling by polyphosphate inositols in microalgae to optimize their biotechnological applications. © 2022 by the authors.FEDER US 2021/0000152

    Inositol polyphosphates and TOR kinase signaling govern photosystem II protein phosphorylation and photosynthetic function under light stress in Chlamydomonas

    No full text
    Stress and nutrient availability influence cell proliferation through complex intracellular signalling networks. In a previous study it was found that pyro-inositol polyphosphates (InsP7 and InsP8) produced by VIP1 kinase, and target of rapamycin (TOR) kinase signalling interacted synergistically to control cell growth and lipid metabolism in the green alga Chlamydomonas reinhardtii. However, the relationship between InsPs and TOR was not completely elucidated. We used an in vivo assay for TOR activity together with global proteomic and phosphoproteomic analyses to assess differences between wild-type and vip1-1 in the presence and absence of rapamycin. We found that TOR signalling is more severely affected by the inhibitor rapamycin in a vip1-1 mutant compared with wild-type, indicating that InsP7 and InsP8 produced by VIP1 act independently but also coordinately with TOR. Additionally, among hundreds of differentially phosphorylated peptides detected, an enrichment for photosynthesis-related proteins was observed, particularly photosystem II proteins. The significance of these results was underscored by the finding that vip1-1 strains show multiple defects in photosynthetic physiology that were exacerbated under high light conditions. These results suggest a novel role for inositol pyrophosphates and TOR signalling in coordinating photosystem phosphorylation patterns in Chlamydomonas cells in response to light stress and possibly other stresses.Ministerio de Economía y Competitividad PGC2018-099048-B-100European Commission 750996National Science Foundation MCB-1552522, MCB-161682
    corecore